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The shear-transformation-zone (STZ) theory by Falk and Langer describes the

rheology of amorphous solids. It was based on the observation that plastic flow

in metallic glasses consists of molecular rearrangements in localized areas (shear

transformation zones). In this dissertation, a two-dimensional tensorial version of

the theory is developed and explored numerically.

The numerical implementation uses finite-difference algorithms on a regular

grid with a second-order explicit time-stepping scheme to integrate the equations

forward in time. Deformation of the boundaries are handled by mapping the area

of the material onto a unit square.

Two different geometries are used to simulate uniaxial tension experiments

where materials are subjected to constant strain rates. In the first setup, a rect-

angular specimen is given an imperceptible indentation, allowing it to neck at

the center. The dynamics are explored systematically by varying both the strain-

ing capability of the STZs (ε0) and the external strain rate. Higher values of ε0

increase the plastic flow and result in sharper necks. Decreased values of the ex-

ternal strain rate cause narrow shear bands to form, consistent with the absence

of thermal relaxation mechanisms in the model.



In the second configuration, the equivalent of pre-annealed materials are ex-

plored. Here, the sample is initially square and the edges are made rough in order

to encourage the formation of shear bands. With respect to ε0 and the external

strain rate, the results show trends similar to those in the necking simulations.

The pre-annealing was modeled by using a low initial density of STZs. This had

most effect when ε0 was large, contributing to the localization of the strain and

making the material appear more brittle.
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CHAPTER 1

INTRODUCTION

A glass is defined as a material that has solidified without crystallizing. It can be

thought of as a liquid where the constituent particles have stopped in their tracks,

at least when considered on time scales of days or shorter; it is a supercooled liquid.

It is an amorphous solid.

There are several types of glasses, including the familiar silicate glasses as well

as glassy polymers [1, 2, 3] and metallic glasses [4, 5, 6, 7]. Sometimes systems with

larger particles where the thermal energy is insignificant are also included, such

as rafts of soap bubbles [8, 9, 10, 11] and granular materials [12, 13, 14, 15, 16].

While glassy polymers often have long and entangled particles, the simple atomic

structure of amorphous metals makes it easier to model. Although the results

presented in this thesis are not limited to metallic glasses, this type of materials was

the main focus while developing the model and comparing results to experiments.

Metallic glasses have been studied since Duwez et al. showed in 1960 that

a metal could be quenched from a molten state without crystallizing [17]. For

decades, the only way to achieve this was to cool the metal extremely rapidly in

a process called melt-spinning, where a jet of molten metal hits a rotating metal

disk, cooling the melt faster than 103 K/s (in fact, usually faster than 105 K/s) and

forming a thin ribbon no thicker than 50µm [4]. Recently, new multi-component

alloys with critical cooling rates as low as 0.1 K/s have been found, allowing the

production of bulk metallic glasses [6, 18, 19]. This has simplified studies of the

mechanical properties, and renewed interest in the material has also spurred many

new applications; see [6] for some examples.
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Amorphous metals have two modes of deformation: Homogeneous and inho-

mogeneous flow [20, 21, 22]. Homogeneous flow is typical for low stresses and high

temperatures, and under uniaxial tension a material sample will deform uniformly

throughout the specimen. In inhomogeneous flow, the deformation is usually lo-

calized in narrow shear bands that run at a 45◦ angle with respect to the tensile

axis [23, 24] (some studies show that the angle of the shear bands deviate under

large isotropic pressures [25, 26]). The cross-section of the material decreases as

slip, and eventually fracture, occurs along these shear bands [21, 23, 27]. At low

temperatures, the shear-localization instability sets in right after yield, making the

material behave in a seemingly brittle manner; there is no hardening due to strain

in metallic glasses, although physical aging decreases the plastic response [28].

This dissertation presents a two-dimensional model that describes elastic and

plastic dynamics in an amorphous solid. The main contribution of this disser-

tation is the exploration of the shear-transformation-zone (STZ) theory, which

is responsible for supplying the model with a plastic-flow description. Chapter 2

starts by presenting some basic mathematical equations including the linear elastic

framework of the model. This chapter is relatively elementary, but is included for

convenience and serves as an introduction to the notation used in this manuscript.

Chapter 3 describes the basic behavior of a zero-dimensional, or scalar, version of

the STZ model, initially developed by Falk and Langer [29, 30]. This scalar model

represents the special case of a uniform material in a spatially extended system,

which applies as long as the deformation is homogeneous throughout the sample.

Chapter 4 derives a tensorial version of the STZ theory starting from microscopic

observations. This model does not incorporate a mechanism for thermal relax-

ation, which means that its dynamics are pertinent to the low-temperature limit.
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The tensorial version was based on both the scalar model developed earlier by Falk

and Langer, as well as some of Falk’s initial ideas of how to write the theory in a

two-dimensional setting [29].

The remaining part, which forms the core of the dissertation, reviews two sets of

numerical uniaxial-tension constant-strain-rate simulations of the two-dimensional,

tensorial STZ model. First, Chapter 5 explains the details of the implementation.

Then the first set is presented in Chapter 6, exploring how the plastic flow affected

the dynamics during necking. The second set is described in Chapter 7, relating the

pre-annealing of amorphous materials to increased strain localization and brittle

behavior. The dissertation is concluded in Chapter 8.



CHAPTER 2

MATHEMATICAL FRAMEWORK

The shear-transformation-zone (STZ) model adds plasticity to linear elastic the-

ory by providing microscopically derived state variables that keep track of the

density and orientation of localized groups of particles that have the freedom to

undergo large deformations. Before introducing the STZ model (Chapters 3 and

4), the basic mathematical framework of linear elastic theory will be established

[31, 32]. This chapter presents the constitutive relations, leaving room for the

plastic deformation which will be introduced later through the STZ theory. As in

the Navier-Stokes model [33], these equations are formulated in terms of deforma-

tion rates. The model presented in this dissertation describes plastic flow, and the

deformation itself (as opposed to its rates) cannot be used to describe the internal

state since strain is dependent on the initial configuration.

Before presenting the equations for the linear elastic framework of the model,

it is necessary to introduce and discuss mathematical notation that will be used

throughout this dissertation. Section 2.1 shows how a tensor can be split into its

isotropic and deviatoric parts. Section 2.2 explains how the representation of a

tensor changes when the coordinate system rotates, and Section 2.3 shows how

advection, including rotation, is taken into account in the temporal derivatives.

Section 2.4 discusses the relation between two- and three-dimensional models. Fi-

nally, the last section presents the equations of motion for the stresses and velocities

using Hooke’s law (the linear elastic constitutive relations) and Newton’s second

law (conservation of momentum). The equations, which leave the plastic defor-

mation unspecified, lay the foundation for the model. The remaining chapters

are devoted to the details of the plastic flow, where the STZ theory is explained,

4
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derived, and explored both analytically and numerically.

2.1 Tensorial Notation

In a two- or three-dimensional elastic and plastic material, it is convenient to

write some of the variables describing the current state, such as the stress σij , in

tensorial form. Further, it is sometimes useful to decompose these tensors into

their isotropic and deviatoric parts. The former corresponds to the trace of the

tensor and represents the average value, while the latter is a traceless tensor which

captures how the property in question is aligned.

As an example, the stress can be decomposed as

σ =







σxx σxy

σxy σyy






=







−p− s τ

τ −p+ s






(2.1)

where the pressure p is the isotropic component, and the deviatoric part of the

tensor (which is indicated by a tilde) is given by

s ≡ σ̃ =







sxx sxy

sxy syy






=







−s τ

τ s






(2.2)

(be careful not to confuse the tensor s with the component s). In general, a

two-dimensional symmetric tensor Tij can be written as

T =







Txx Txy

Txy Tyy






=







−Tp − Ts Tτ

Tτ −Tp + Ts






(2.3a)

or

Tij = −Tpδij + T̃ij , (2.3b)

where δij is the Kronecker delta, T̃ij is the deviatoric part of Tij , and

Tp = −Txx + Tyy
2

, Ts = −Txx − Tyy
2

, Tτ = Txy . (2.3c)
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2.2 Change of Basis

This section describes how to transform the coordinates of a vector or a tensor

between two bases that are rotated with respect to each other. Assume that êi

and ê′
i are two orthogonal bases. Define the cosines between these unit vectors as

ê′
i · êj = βij . (2.4)

This means that

ê′
i = βij êj and êi = βjiê

′
j . (2.5)

A vector v and a tensor σ can be written in the êi basis as

v = viêi σ = σij(êi ⊗ êj) . (2.6)

The same vector and tensor can be written using a different representation, or

basis, ê′
i:

v = v′iê
′
i σ = σ′

ij(ê
′
i ⊗ ê′

j) . (2.7)

Writing the system in a rotated basis can be thought of as keeping the material

and its properties standing still, and just changing the coordinate system. Of

course, if the coordinate system changes (from êi to ê′
i), then the coordinates have

to change, too (from vi and σij to v′i and σ′
ij). Fig. 2.1 illustrates how one vector

can be represented in two different coordinate systems simultaneously.

If êi is the standard two-dimensional Cartesian coordinate system where the

index i runs through the values x and y, and ê′
i is êi rotated an angle θ in the

counter-clockwise direction, then

êx =







1

0






, êy =







0

1






, ê′

x =







cos θ

sin θ






, ê′

y =







− sin θ

cos θ






, (2.8)
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Figure 2.1: The vector v represented in the two coordinate systems êi and ê′
i,

the latter rotated an angle θ in the counter-clockwise direction
with respect to the former.

and

β =







cos θ sin θ

− sin θ cos θ






. (2.9)

Further,

v = viêi =







vx

vy







σ = σij(êi ⊗ êj) =







σxx σxy

σxy σyy







v = v′iê
′
i =







v′x

v′y







′

σ = σ′
ij(ê

′
i ⊗ ê′

j) =







σ′
xx σ′

xy

σ′
xy σ′

yy







′

.

(2.10)

The prime (′) on the matrices signifies that in these matrices the coordinates are

given in the ê′
i basis.
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Using the first part of Eq. (2.5), the vector v and tensor σ can be written as

v = viêi = viβjiê
′
j =







vx cos θ + vy sin θ

−vx sin θ + vy cos θ







′

(2.11a)

and

σ = σij(êi ⊗ êj) = βkiσijβlj(ê
′
k ⊗ ê′

l)

=







−p− s cos 2θ + τ sin 2θ τ cos 2θ + s sin 2θ

τ cos 2θ + s sin 2θ −p+ s cos 2θ − τ sin 2θ







′

, (2.11b)

respectively. In order to simplify Eq. (2.11b), the stresses have been written in

their isotropic and deviatoric components, as given by Eq. (2.1). For clarity, the

last equation can be written in terms of the isotropic and deviatoric components

alone,

p′ = p (2.12a)

s′ = s cos 2θ − τ sin 2θ (2.12b)

τ ′ = τ cos 2θ + s sin 2θ . (2.12c)

Again, remember that σ′
xx represents the stress along x′, while σxx represents the

stress along x.

The original coordinates can also be written in terms of the rotated coordinates

by using the second part of Eq. (2.5):

v = v′iê
′
i = v′iβij êj =







v′x cos θ − v′y sin θ

v′x sin θ + v′y cos θ






(2.13a)
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and

σ = σ′
ij(ê

′
i ⊗ ê′

j) = βikσ
′
ijβjl(êk ⊗ êl)

=







−p′ − s′ cos 2θ − τ ′ sin 2θ τ ′ cos 2θ − s′ sin 2θ

τ ′ cos 2θ − s′ sin 2θ −p′ + s′ cos 2θ + τ ′ sin 2θ






. (2.13b)

Writing out the mapping between the stresses explicitly gives

p = p′ (2.14a)

s = s′ cos 2θ + τ ′ sin 2θ (2.14b)

τ = τ ′ cos 2θ − s′ sin 2θ . (2.14c)

For convenience, the special case for a traceless tensor, say the deviatoric stress

s, is written out below:

s =







−s′ τ ′

τ ′ s′







′

=







−s cos 2θ + τ sin 2θ τ cos 2θ + s sin 2θ

τ cos 2θ + s sin 2θ s cos 2θ − τ sin 2θ







′

=







−s τ

τ s






=







−s′ cos 2θ − τ ′ sin 2θ τ ′ cos 2θ − s′ sin 2θ

τ ′ cos 2θ − s′ sin 2θ s′ cos 2θ + τ ′ sin 2θ






. (2.15)

2.3 Material and Spatial Rates

Continuum mechanics has two types of description of the motion in common use:

The material description and the spatial description [32, 34]. Consider a particle

P located inside a material. Then

• the material or referential description has the position x0 of the particle

P in some arbitrary reference configuration and the time t as its independent

variables. If the system actually assumed the reference configuration at time

t = 0, it is called the Lagrangian description. Malvern [34] states that there
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is a subtle difference between the material and referential description; that

the material description has the actual particle P , rather than the position

of P in some reference configuration, as the independent variable. Disregard-

ing the distinction between these two descriptions rarely causes any harm,

and the terms “material” and “referential” are used interchangeably in this

manuscript.

• the spatial description has the current position x of the particle P and the

time t as its independent variables. Also called the Eulerian description, it

focuses on a fixed position in space, x, rather than following the particle P

around. The spatial description is useful when describing fluid flow, as in

the Navier-Stokes equations [33], and was used for the equations of motion

in the numerical simulations described in Chapters 5, 6, and 7.

Constitutive equations such as the stress-strain relations (Hooke’s law) usually

have the simplest representation when presented in a frame of reference that is at

rest relative to the material. Since the model in this dissertation is based on flow

(or strain rates), it seems that the only viable approach is for the state variables

to be given in Eulerian coordinates, as is done in the Navier-Stokes equations for

fluid flow. The former description, using material derivatives, follows the material

particles, while the latter representation uses local derivatives that are always fixed

relative to the inertial lab frame.

The rest of this section gives an overview of the relation between the time

derivatives given by the material and spatial descriptions. Although some deriva-

tions are included, this should not be considered rigorous mathematical proof;

rather, its aim is to give some intuition into the use of material derivatives. The

details can be found in for instance [32, 34].
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As mentioned above, it is useful to write the material time derivative in terms of

the spatial. Any variable, say the temperature T , can be written both in terms of

the referential coordinates, T = g0(x0, t), and in terms of the spatial coordinates,

T = g(x, t). In the material time derivative, the referential variables are kept

constant. In the numerical simulations, which use the spatial description, the

Eulerian variables are kept constant. In order to link this gap, it is assumed

that there exists a sufficiently differentiable and single-valued function r such that

x = r(x0, t), which describes the motion of the material in terms of the referential

coordinates and the time; the function r need not be known. Thus

T = g0(x0, t) ≡ g[r(x0, t), t] . (2.16)

For a two-dimensional material this means that

(

∂T

∂t

)

x0

=

(

∂T

∂t

)

x

+
∂T

∂x

(

∂x

∂t

)

x0

+
∂T

∂y

(

∂y

∂t

)

x0

. (2.17)

Since x = (x, y) = r(x0, t), it follows that

(

∂x

∂t

)

x0

= v . (2.18)

As a notational convenience, the material and spatial time derivatives are written

as
(

∂

∂t

)

x0

≡ D

Dt
and

(

∂

∂t

)

x

≡ ∂

∂t
, (2.19)

respectively. Thus

DT

Dt
=
∂T

∂t
+ vx

∂T

∂x
+ vy

∂T

∂y
. (2.20)

The left-hand side gives the change of temperature in a small part of the material,

following specific particles even as it is moving and deforming, while the local
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derivative ∂T/∂t gives the change in temperature of a specific location in space,

regardless of what part of the material is occupying it.

For the special case of rigid translation, DT/Dt = 0. In spatial coordinates,

on the other hand, the value of T changes if it has a gradient. For example, if

∂T/∂x > 0, and vx > 0, then as the body moves to the right (positive x-direction),

the local value of T has to become smaller. Mathematically,

DT

Dt
=
∂T

∂t
+ vx

∂T

∂x
= 0 , (2.21)

which means that

∂T

∂t
= −vx

∂T

∂x
< 0 . (2.22)

From the point of view of the particle, the coordinate system moves in the negative

x-direction at a speed of −vx.

When dealing with non-scalar quantities, both rotation and translation needs

to be taken into account. The material derivatives with rotation for a vector v

and a tensor σ are given by

Dv

Dt = lim
∆t→0

(

v∆ − v

∆t

)

x0

and
Dσ

Dt = lim
∆t→0

(

σ∆ − σ

∆t

)

x0

, (2.23)

respectively. Here, v and σ are given at time t, and v∆ and σ∆ are the values of

v and σ at a later time t + ∆t in the frame of the particle (that is, in referential

coordinates):

v∆ = R v[r(x0, t+ ∆t), t+ ∆t] (2.24a)

σ∆ = R σ[r(x0, t+ ∆t), t+ ∆t] RT , (2.24b)

where

R = β(θ = ∆α) ≈







1 ∆α

−∆α 1






(2.25)
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for small angles ∆α, giving the angular velocity

ω = lim
∆t→0

∆α

∆t
=

(∇ × v)z
2

=
1

2

(

∂vy
∂x

− ∂vx
∂y

)

; (2.26)

if ω > 0 then the material is rotating in the counter-clockwise direction. The

operator R changes the basis from êi to a coordinate system ê′
i which is rotated

an angle θ in the counter-clockwise direction. Imagine that the material is un-

dergoing a pure rigid rotation in the counter-clockwise direction. In this case,

one would expect D/Dt = 0; since the operator R turns the coordinate system

the exact same amount as the material is moving, it seems as if the material is

standing still. Similarly, if the material is undergoing a pure rigid translation, then

σ[r(x0, t + ∆t), t + ∆t] = σ[r(x0, t), t], giving D/Dt = 0. Thus if there are only

rigid translations and rotations, σ∆ = σ. These arguments hold true for v, too.

Continuing with the derivation, one has that

Rv = v + ∆αvR (2.27)

RσRT = σ + 2∆ασR (2.28)

to first order in ∆α, where

vR =







vy

−vx






and σR =







τ s

s −τ






. (2.29)

This means that

Dv

Dt =
Dv

Dt
+ ω vR and

Dσ

Dt =
Dσ

Dt
+ 2ωσR . (2.30)
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The material time derivatives with rotation for each of the components vx, vy, p,

s, and τ can be written as

D
Dt







vx

vy






=

D

Dt







vx

vy






+ ω







vy

−vx






, (2.31)

D
Dt













p

s

τ













=
D

Dt













p

s

τ













+ 2ω













0

−τ

s













. (2.32)

As a check that this is correct, consider a pure rigid rotation in the counter-

clockwise direction (ω > 0) around the origin. This means that Dσ/Dt = 0,

giving that Ds/Dt = 2ωτ and Dτ/Dt = −2ωs. Consider a particle has τ > 0;

this means that the material is being sheared or stretched in the positive x- and y-

direction, becoming longer along y = x and shorter along y = −x. If there is rigid

rotation, the particle does not notice any change in its surroundings, but locally

the positive shear turns into a deviatoric stress that is positive in the y-direction.

Thus a positive τ gives a positive s. Likewise, starting with a deviatoric stress in

the y-direction, this turns into a negative shear.

Although the rotational derivatives apply to most vectors, they are not used

in the equation of motion for the velocity, which comes from the conservation

of momentum (Newton’s second law). In this case the approriate derivative is

Dv/Dt, as used in Section 4.3. Detailed derivations can be found in [32, 34].

2.4 Linear Elasticity in Two and Three Dimensions

The theory and simulations presented in this dissertation are all strictly two-

dimensional. Experiments and most of the literature describing them often use

a three-dimensional description. The two-dimensional approach, where the third
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degree of freedom simply does not exist, can model results from, say, a two-

dimensional molecular dynamics simulation. But care should be taken when ex-

trapolating the results to three dimensions. In certain cases a three-dimensional

description can mimic a two-dimensional model. One such case is linear elasticity

where the third dimension is made irrelevant by assuming plane stress or plane

strain. This section presents linear elasticity in both two and three dimensions,

and explains how these descriptions are connected in the cases of plane stress and

plane strain.

In order to avoid confusion, all variables and parameters in this section have a

subscript referring to what dimensional model they belong to. For instance, p2 is

the pressure in two dimensions, and σ3xx is σxx in the three-dimensional model. If

the form of an equation is valid in both two and three dimensions, a subscript d

is used on the relevant variables and parameters, as in νd. Note that there are no

dimensional indices on the strains εij; they are assumed to be unaffected by the

dimensionality (with the only exception that εxz, εyz, and εzz do not exist in 2D).

Stress and pressure have different units in two and three dimensions, as does

the shear modulus. Notationally, this is simplified by scaling all variables and

parameters that have the unit of stress by 2µd, and writing the new variables

with an accent: σ̂d = σd/2µd, p̂d = pd/2µd, ŝd = sd/2µd, Êd = Ed/2µd, and

K̂d = Kd/2µd.

The following equations for the elastic strain ε, the stress σ, the deviatoric

stress s, the pressure p, the bulk compressibility K, Young’s modulus E, and the
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Poisson ratio ν, are true in both two and three dimensions:

εij = σ̂dij −
νd

1 + νd
σ̂dkkδij = ŝdij −

p̂dδij

K̂dd
, (2.33a)

σ̂dij =
Êd

1 + νd

(

εij +
νd

1 − (d− 1)νd
εkkδij

)

(2.33b)

p̂d = −1

d
σ̂dkk , (2.33c)

ŝdij = σ̂dij + p̂dδij , (2.33d)

Êd = 1 + ν2 (2.33e)

K̂d ≡ − p̂d
εkk

, K̂dd =
1 + νd

1 − (d− 1)νd
. (2.33f)

The plan now is to write out these equations explicitly in both two and three

dimensions, and then see if it is possible to restrict the latter to resemble the

former (for example by using plane strain).

Consider a linear elastic block of material with an applied load σ̂dyy = σ̂0, where

σ̂dxx = 0. In this setting, the Poisson ratio is defined as

νd = lim
σ0→0

(

−εxx
εyy

)

. (2.34)

In the case of a three-dimensional system, a constraint is needed for the z-direction

as well. Both plane strain (εzz = 0) and plane stress (σ̂3zz = 0) will be considered

below.

Writing out the diagonal terms of Eq. (2.33a) in two dimensions gives

εxx = −ν2σ̂0 and εyy = (1 − ν2)σ̂0 . (2.35)

In three dimensions with plane stress (σ̂3zz = 0) the equations read

εxx = −ν3σ̂0 , εyy = (1 − ν3)σ̂0 , εzz = −ν3σ̂0 , (2.36)

while plane strain (εzz = 0) gives

εxx = − ν3

1 − ν3
σ̂0 , εyy =

1 − 2ν3

1 − ν3
σ̂0 , σ̂3zz =

ν3

1 − ν3
σ̂0 . (2.37)
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Comparing Eqs. (2.35) with (2.36), one can see that for plane stress the same

equations are valid for εxx and εyy in both two and three dimensions. For plane

strain, on the other hand, the equations for εxx and εyy are only the same if

ν2 =
ν3

1 − ν3

(2.38)

from which it follows that

ν3 =
ν2

1 + ν2
,

1 − ν2

1 + ν2
= 1 − 2ν3 ,

2K̂2 =
1

1 − 2ν3
=

1 + ν2

1 − ν2
, 3K̂3 =

1 + ν3

1 − 2ν3
.

(2.39)

It is worth noting that the two- and three-dimensional Poisson ratio can have

different values. Throughout this thesis, the value of the Poisson ratio was chosen

to be ν2 = 1/2. This would correspond to ν3 = 1/3 in a three-dimensional model

subjected to plane strain, which could occur in the bulk of a thick material, that

is, where the length of the material in the third direction, Lz, is much greater than

the two others, Lx and Ly. This is only of importance when making quantitative

comparisons between two-dimensional models and three-dimensional experiments.

The main focus of this dissertation is on describing behavior in two-dimensional

models. Consequently, only the two-dimensional Poisson ratio ν2 will be used.

Before leaving the topic of three-dimensional systems, the two-dimensional linear

elastic model will be compared to the three-dimensional version subjected to plane

strain as an example of how the former can be viewed as a special case of the

latter.

The full plane strain condition is that

εxz = εyz = εzz = 0 , vz = 0 , and
∂

∂z
= 0 . (2.40)

Note that since εzz = 0 in 3D, εkk is the same in both two and three dimensions.
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Eq. (2.33a) gives that

ŝ3xz = ŝ3yz = σ̂3xz = σ̂3yz = 0 , (2.41a)

ŝ3xy = ŝ2xy = σ̂3xy = σ̂2xy. (2.41b)

Using Eqs. (2.33f), one finds that

p̂3 =
K̂3

K̂2

p̂2 =
2

3
(1 + ν3)p̂2 . (2.42)

Eq. (2.33a) and εzz = 0 gives

ŝ3zz =
p̂3

3K̂3

=
2

3
(1 − 2ν3)p̂2 (2.43)

which together with (2.33d) gives

σ̂3zz = −2ν3p̂2 . (2.44)

Combining (2.42) and (2.44) with (2.33c) for d = 3, one finds that

p̂2 = − σ̂3xx + σ̂3yy

2
; (2.45)

further, using Eq. (2.45) with (2.33c) for d = 2, one gets

σ̂3xx + σ̂3yy = σ̂2xx + σ̂2yy . (2.46)

When taking the difference εxx − εyy using (2.33a) (in either two or three dimen-

sions), the pressure disappears, and it follows that

ŝ3xx − ŝ3yy = ŝ2xx − ŝ2yy , (2.47)

σ̂3xx − σ̂3yy = σ̂2xx − σ̂2yy . (2.48)

Finally, combining (2.46) and (2.48) gives the linear-elastic relations between the

stresses in a two-dimensional model and a three-dimensional model subjected to
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plane strain:













σ̂3xx σ̂3xy σ̂3xz

σ̂3xy σ̂3yy σ̂3yz

σ̂3xz σ̂3yz σ̂3zz













=













σ̂2xx σ̂2xy 0

σ̂2xy σ̂2yy 0

0 0 −2ν3p̂2













, (2.49a)

p̂3 =
2

3
(1 + ν3)p̂2 . (2.49b)

Making a similar comparison between two and three dimensions when plastic flow

is included is harder; so far, the three-dimensional STZ theory has only been

successfully related to the two-dimensional version when imposing plane strain on

the elastic and plastic parts separately. The results presented in this dissertation

are still valid as long as they are considered in the context of this “strictly two-

dimensional” environment; a more detailed analysis will be needed if quantitative

comparisons are to be made with three-dimensional experimental results.

2.5 Equations of Motion

It is now time to write down the equations of motion that constitute the framework

of the flow model, having presented the necessary mathematical tools. These

equations include the rates for the stress σ and the velocity v, which will use

Hooke’s law (the linear elastic constitutive relations) and Newton’s second law

(conservation of momentum), respectively.

The equation of motion for the velocity basically states that momentum is

conserved, and is written as

ρ
Dvi
Dt

=
∂σji
∂xj

. (2.50)

To form the stress rates, it is assumed that the total rate of deformation can be
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written as the superposition of the elastic and plastic parts,

Dtot
ij = Del

ij +Dpl
ij . (2.51)

The left-hand side is approximated as

Dtot
ij ≈ 1

2

(

∂vi
∂xj

+
∂vj
∂xi

)

, (2.52)

where the geometric nonlinear terms are left out [31]. The elastic rate of deforma-

tion is given by

Del
ij =

Dεij
Dt , (2.53)

where εij is the elastic strain. The form of the plastic rate of deformation Dpl
ij is

the topic of Chapters 3 and 4. The two-dimensional version of the constitutive

equations (2.33a) relating the stress and the strain becomes

εij =
σij
2µ

− ν2

1 + ν2

σkk
2µ

δij =
sij
2µ

− 1 − ν2

1 + ν2

p

2µ
δij , (2.54a)

and stated here for convenience, Eq. (2.54a) can also be written in terms of the

stresses:

σij
2µ

= εij +
ν2

1 − ν2
εkkδij . (2.54b)

The equations of motion for the stresses can now be found by combining Eqs. (2.51),

(2.53), and (2.54a). It is easier to write the equations after splitting the stresses

into isotropic and deviatoric parts, as shown in Section 2.1; the equations of motion

for the stress and velocity are thus written as

(

1 − ν2

1 + ν2

)

1

2µ

Dp

Dt
= −1

2
∇ · v , (2.55a)

1

2µ

Dsij
Dt = D̃tot

ij −Dpl
ij , (2.55b)

ρ
Dvi
Dt

=
∂sji
∂xj

− ∂p

∂xi
, (2.55c)
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where the deviatoric part of the total rate of deformation is given by

D̃tot
ij =

1

2

(

∂vi
∂xj

+
∂vj
∂xi

)

− 1

2
∇ · v . (2.56)

The plastic deformations are assumed to conserve volume (or area, since there are

only two dimensions), thus Dpl
ij is traceless and Dpl

ij ≡ D̃pl
ij . The five independent

equations (2.55) specify the dynamics of the stresses and the velocities, with the

only piece left unspecified being the plastic rate of deformation Dpl
ij . The STZ

theory described in the following chapters suggests how to formulate the dynamics

of the plastic flow based on microscopic considerations.

2.6 Speed of Sound

The speed of sound in an elastic material determines how quickly information, and

deformations, can propagate. When considering plastic flow, it is often assumed

that the elastic deformations occur instantaneously, or that the speed of sound is

large compared to the velocity of the material. To make sure that this quasi-static

assumption holds, it is necessary to know how the sound speed relates to the other

parameters.

In a system where the elastic wavelengths are much smaller than the size of the

material (that is, in an infinite system), the transverse wave speed is given by

ct =

√

µ

ρ
(2.57)

in both two and three dimensions. The longitudinal (or dilatational) wave speed

cl is faster by at least a factor of
√

2, but the exact factor depends on the dimen-

sionality of the system and the Poisson ratio. For finite systems, small changes

due to the geometry must also be taken into account. See [31] for further details.



CHAPTER 3

THE SHEAR-TRANSFORMATION-ZONE THEORY

3.1 Introduction

The goal of the continuum shear-transformation-zone (STZ) theory is to describe

plastic deformation in amorphous solids on a mesoscopic scale, averaging out some

of the microscopic, discrete details. These details are often atomistic, as in metallic

glasses [4, 5, 6, 7], but they can also be larger, as in granular materials [12, 13, 14,

15, 16] or even foams [8, 9, 10, 11]. The plastic deformation is described in terms

of flow rates, similar in approach to that of the Navier-Stokes model [33] although

the scalar pressure has been replaced with a stress tensor.

There have been many attempts to describe plastic flow in crystalline and

polycrystalline materials [35, 36, 37, 38, 39, 40, 41, 42, 43, 44]. The conventional

approach has been to separate the static and time-dependent descriptions, although

a few of them are so-called “unified theories” that try to combine the two in a single

model. The STZ model is an example of such a unified theory, incorporating both

static and time-dependent plastic flow in one succinct description, but it is based

on the microscopic dynamics of amorphous solids1.

The STZ theory was constructed by Falk and Langer [29, 30, 47, 48, 49, 50, 51,

52], and originated with the assumption that plastic deformation is limited to, and

defined as, the non-affine transformation of particles in localized areas or zones.

This was based on similar ideas made by Argon, Spaepen, and others who described

creep in metallic glasses in terms of local, molecular transitions or rearrangements

[8, 20, 53, 54, 55, 56]. This, in turn, grew out of theories by Turnbull, Cohen,

1Recently, a couple of models for glassy materials using the free volume as an
order parameter have been published [15, 45, 46].

22
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and others, who suggested that the observed behavior in the amorphous metals

could be described by linking the transition rates to local free-volume fluctuations

[53, 57, 58, 59].

To identify these localized zones of non-affine transformations, Falk invented a

metric. The question he asked was: Given two snapshots taken at different times

during a molecular dynamics simulation, how could one identify where there had

been plastic deformations? To answer this question, he developed a numerical tool

where he would take an atom or particle and all of its neighbors within a certain

cutoff radius (in his case the radius of the cutoff was 2.5 times that of the atom),

and compare the configuration of all these atoms in the initial snapshot with the

configuration of the same atoms in the final snapshot. Specifically, he would try

to describe the transformation using a local strain tensor. Only if the deformation

could be described as uniform strain would this be accurate; otherwise a best fit

would be made by minimizing the deviation from a uniform strain deformation.

This deviation, which he referred to as D2
min, would measure the amount of non-

affine deformation in the neighborhood of the given atom. He would then calculate

D2
min for each atom in the simulation and use it as a diagnostic to measure the

amount of local rearrangements in different areas; a high D2
min would thus corre-

spond to an area with many active STZs. For a more detailed account of D2
min,

see [29, 30, 47].

Looking more closely at the areas that had a high D2
min, Falk noticed that

they behaved like two-state systems. When stressed in one direction, the atoms

would locally rearrange in a non-affine manner, or flip, in order to relieve stress,

but any further applied stress would not have any significant effect (see Fig. 4.1

in the next chapter for an illustration of such a flip). On the other hand, a stress



24

in the opposite direction would readily change the configuration back, although,

again, any further stress would only have a negligible effect. In short, these areas,

or STZs, could flip back and forth but would “jam” any further deformation if

stressed in one direction only.

In order to describe these STZs in a continuum setting, Falk introduced the

state variables Λ and ∆ij . The former is a scalar that measures a scaled density of

STZs, while the latter is a traceless tensor that indicates the alignment of flipped

STZs, that is, the direction in which the majority of the STZs are pointing.

A tensorial version of this model will be developed and explored in Chapter 4.

In the following section, the more intuitive special case of an infinite, uniform

material (sometimes referred to as the zero-dimensional, scalar, or non-tensorial

description) will be discussed.

3.2 Basic Properties

Assume a uniform material subjected to simple shear, where the principal stress

axes and the STZs align only along the horizontal (x) and vertical (y) directions.

As compared to the two-dimensional version, this zero-dimensional or scalar STZ

theory avoids the use of tensors, eliminating some equations and making the re-

maining ones simpler. In addition, the scalar model will be presented in reduced

units where some of the physical parameters have been eliminated through rescal-

ing (see Section 4.6).

In this zero-dimensional model, assume that s ≡ syy = −sxx and sxy = 0 (the

value of the hydrostatic pressure p depends on the boundary conditions, but it is

not needed at this point). Thus s > 0 means that the material is being pulled

in the y-direction, while s < 0 means that it is being pulled in the x-direction.
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Similarly, define ∆ ≡ ∆yy = −∆xx and ∆xy = 0. When ∆ > 0, there are more

STZs aligned along the y-axis, while ∆ < 0 means that a majority of STZs are

lying parallel to the x-axis. If ∆ = 0 then there are equally many STZs pointing

in the vertical and horizontal directions.

The equation of motion for the relative density of STZs in the scalar model is2

Λ̇ = Γ(1 − Λ) , (3.1)

where Γ, which is always positive, is proportional to both the rate of energy dissi-

pation per STZ and the rate of creation and annihilation of STZs. The steady-state

value for the density of STZs is Λ = 1, although if initially lower, it might take

a long time for Λ to grow if the plastic dissipation is low. Notice in Eq. (3.1)

how the first and second term represents the creation and annihilation of STZs,

respectively. The first term creates STZs at a rate proportional to Γ, while the

last term destroys them at a rate of ΓΛ. This means that as Λ increases, the rate

of STZ annihilation will also increase until it balances the rate of creation; this

happens when Λ reaches unity.

Currently, it will be assumed that the system has reached a state where Λ = 1.

In that case,

∆̇ = w + Γ(0 − ∆) , (3.2)

where

w ≡ Dpl

ε0
= s− ∆ , (3.3)

Dpl is the plastic rate of deformation, and ε0 is a physical parameter proportional

to the amount of strain induced by the flipping of STZs. The first term of Eq. (3.2),

w, is responsible for changing ∆ when the STZs are flipping, while the second and

2The full set of equations of motion for the scalar STZ model is derived in
Section 4.4.
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third terms adjust the variable as STZs are created and annihilated. The zero

in the second term was included in order to compare it to the right-hand side of

Eq. (3.1), but this will be explained later.

Considering only the first term, ∆ grows more positive when w > 0. Physically,

this means that more and more STZs align along the y-axis as long as the material

is deforming plastically in the vertical direction. Similarly, as long as w stays

negative, ∆ will grow more negative as the number of STZs aligned with the x-

axis increases. Still only considering the first term, assume that the stress s is

held at a fixed positive stress, and that initially the STZs are randomly aligned

along the horizontal and vertical axes giving ∆ = 0. The fixed stress causes a

positive rate of deformation in the y-direction, and ∆ will grow until it reaches s.

The system becomes jammed. Increasing the stress a little will not do much, since

most of the STZ are already aligned along the vertical axis. If, on the other hand,

the stress is reversed (s → −s), the rate of plastic deformation will become large

and negative, and the STZs will quickly align along the x-axis as the ∆ tries to

catch up with the new value of s.

This would be the end of the story if STZs were never created nor destroyed.

Notice how the last two terms of Eq. (3.2) resemble the right-hand side of Eq. (3.1).

In both equations, the part that is proportional to Γ represents the creation of

STZs, while the part that is proportional to ΓΛ or Γ∆ speaks for the annihilation.

The main difference from Eq. (3.1) is that the first part is zero; ∆ does not change

when new STZs are created. The reason for this is that the newly created STZs are

randomly aligned in the horizontal and vertical directions. This is an important

property of the model, because the newly created STZs can now flip and further

deform the material. Thus, if the stress is high enough, and enough STZs are



27

annihilated and recreated, the system will no longer be jammed; there will be

plastic flow.

It is worth looking at this mechanism in more detail. If Λ = 1, then

Γ =
w2

(1 − ∆2)
. (3.4)

Γ is proportional to both the creation and annihilation of STZs as well as the rate

of dissipated energy per STZ. Inserting Eq. (3.4) into (3.2) gives

∆̇ =
(s− ∆)(1 − s∆)

1 − ∆2
. (3.5)

Again, assume that the material is subjected to a constant stress. Setting ∆̇ = 0,

one can see that there are two steady-state solutions:

∆ = s and ∆ =
1

s
. (3.6)

The first solution, as explained earlier, corresponds to a jammed material with

w = 0. The second solution is new, and it was made possible by the annihilation

term in Eq. (3.2). In this case, the plastic deformation is non-zero, and the material

is flowing. The two steady-state solutions (3.6) have been plotted in Fig. 3.1. The

transition between the jammed and flowing solutions occurs when the two solutions

match at s = ±1:

|s| < 1 is jammed

|s| > 1 is flowing











for a steady-state solution

(Λ̇ = ∆̇ = 0, Λ = 1).
(3.7)

The critical stress |s| = 1 behaves as if it were the yield stress, but notice that

no explicit yield stress was specified in the model; it is a result of the interplay

between the rate of flipping and the rate of creation and annihilation of STZs. It

is worth noting that the denominator of Eq. (3.5) ensures that ∆2 < 1 (in general,

∆2 < Λ2).
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Figure 3.1: The flow diagram for ∆ when Λ = 1 and the deviatoric stress s
is held constant. The arrows show that ∆ will flow towards the
steady-state solution, and the horizontal lines emphasize that ∆2

is always less than unity. The line s = ∆ represents the jammed
solution, while s = 1/∆ is the plastically flowing steady-state
solution.

Until now, most of this discussion has focused on behavior at Λ = 1. Exper-

iments have shown that metallic glasses that have been annealed below the glass

transition temperature seem more brittle, show more pronounced strain softening,

and have decreased plastic flow [21, 60, 61, 62, 63, 64, 65]. Microscopically, obser-

vations showed structural relaxation in the form of more closely packed molecules,

corresponding to a macroscopic increase in density. Upon plastic deformation the

materials were seen to return to their pre-annealed (as-quenched) states, including

a decrease in the density and a lower packing fraction. Annealing for a longer time

or with a higher temperature gave more pronounced changes in the mechanical

properties. It is also worth noting that aging the materials over longer periods of
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time at lower temperatures also made the metallic glasses more brittle [28].

The STZ theory captures the change in behavior due to annealing through

the variable Λ. When a material is initially quenched from a molten state, the

atoms have little time to organize into a closely packed configuration, leaving more

potential STZs in a “fluffy” structure. Annealing the material packs the atoms into

a tighter configuration and gives a lower initial Λ. This picture also fits in with

the idea that plastic work increases the density of STZs; it “fluffs up” the tightly

packed atoms, leaving more room for local rearrangements.

The version of the STZ theory that is explored numerically in this dissertation

has no mechanism for thermal creep or relaxation, which is reflected in the fact

that Λ̇ ≥ 0. Thus the model can only simulate pre-annealed materials, by setting

the initial value of Λ low. In order to incorporate the effects of annealing and aging

seen in real materials, there would need to be a mechanism in Eq. (3.1) that could

reduce the value of Λ. There are currently efforts to incorporate thermal effects

into the STZ theory [66].

With Λ no longer assumed to be one, the equations of motion for Λ̇ and ∆̇ read

Λ̇ = Γ(1 − Λ) , (3.8a)

∆̇ = w − Γ∆ , (3.8b)

with

Γ =

(

2Λ

1 + Λ

)

w2

Λ2 − ∆2
and w = sΛ − ∆ . (3.9)

Interesting enough, the stress at |s| = 1 can still be considered a yield stress.

Unless the stress is increased too rapidly, ∆ ≈ Λs as long as |s| < 1. This means

that

Γ ∝ w2

1 − s2
. (3.10)
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Thus when the stress s2 approaches one, the plastic dissipation increases dramat-

ically which in turn forces the density of STZs to grow rapidly to its equilibrium

value Λ = 1.

Instead of concentrating on the stress s, consider ∆2 as it approaches Λ2; this

means that all the available STZs have flipped, inducing Γ to grow rapidly (due to

its denominator), creating more STZs. The system will converge to steady state

as Λ → 1, and the results outlined earlier will apply.

3.3 Constant Strain Rate

So far, the discussion has focused on a uniform material subjected to a fixed

load (that is, a constant stress s). Alternatively, one could strain the material

at a constant rate and let the stress vary; it is this approach that is used in the

numerical simulations described in Chapters 6 and 7. The equation of motion for

the stress is3

ṡ = µ(1 + ν2)
(

Dtot −Dpl
)

= µ(1 + ν2)
(

Dtot − ε0w
)

, (3.11)

where Dtot is given and constant. The total strain εtot and the total strain rate

Dtot are linked through

εtot = Dtott (3.12)

(εtot is the true, or logarithmic, strain, as opposed to the engineering strain). Note

that as long as µε0 and Dtot/ε0 are kept constant, ε0, µ, and Dtot can be changed

without affecting the equations for ṡ, Λ̇, or ∆̇ at all. In fact, Eq. (3.11) could be

rescaled to eliminate one of the three parameters. Later on, though, when dealing

3See Section 4.4 for details on the derivation.
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with a two-dimensional system, such a rescaling will no longer be possible: µ is

part of determining the sound speed in the material, and the total strain will affect

the geometry and thus the behavior of the material.

If the material is strained at a constant rate, steady state is reached when

Λ̇ = ∆̇ = ṡ = 0, which implies that w = Dtot/ε0, Λ = 1, and ∆ = 1/s. From this,

the steady-state stress is found to be

s∞ =
Dtot

2ε0
+

√

1 +

(

Dtot

2ε0

)2

≈















1 when Dtot/ε0 � 1

Dtot/ε0 when Dtot/ε0 � 1

(3.13)

(this solution has s∞ ≥ 1; there is a second solution for the steady-state stress

that gives −1 ≤ s∞ < 0, but this is an invalid solution since it gives ∆2 > 1).

Eq. (3.13) is plotted in Fig. 3.2.

When looking beyond the scalar version of the STZ model, preparing for the

spatially extended two-dimensional numerical simulations, it turns out that the

results of a constant strain rate test depends on how the strain rate is initially

ramped up. This is especially true for tests with high strain rates, although the

sensitivity depends on the values of the other parameters as well. If the strain rate

is ramped up too quickly to its final value, it becomes unclear how the speed of

the spreading elastic and plastic deformations affect the results. If the strain rate

is ramped up too slowly, the system might reach yield stress before the strain rate

has attained its final value.

In order to eliminate some of these arbitrary side-effects caused by ramping up

the strain rate at different speeds, one can start the numerical experiments with

the strain rate already at its final value. Given this strain rate, one can calculate
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Figure 3.2: The steady-state stress s∞ plotted against the scaled strain rate
Dtot/ε0 in a uniform material. When Dtot/ε0 � 1, the steady-
state stress remains around 1. When Dtot/ε0 � 1, the steady-
state stress becomes proportional to the strain rate.

what the initial values of the other fields should be in order for the system to start

off in a state close to steady state; this will minimize oscillating stresses and other

transient effects. Given the strain rate Dtot and the initial values Λ0 ≡ Λ(0) and

∆(0) = 0, the initial stress should be4

s(0) =
Dtot

1
µ(1+ν2)

+ ε0Λ0

, (3.14)

with the corresponding initial stress rate

ṡ(0) = s(0) (3.15)

It is useful to know at what total strain εtot
yield and time ∆t the stress s reaches

unity (the “yield stress”). Although it is hard to calculate the exact value analyti-

4See Section 4.7 for details on the derivation.
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cally, the assumption that ṡ stays constant until s = 1 gives a good approximation.

Combining ṡ(0)∆t = 1 − s(0) and εtot
yield = ∆tDtot, solving for εtot

yield, gives

εtot
yield = ε0Λ0 −Dtot +

1

µ(1 + ν2)
[assuming s(0) < 1] . (3.16)

The time then follows from ∆t = εtot
yield/D

tot.

The STZ model can also account for an effect known as strain softening, where

the stress peaks at a value higher than the yield stress before decaying down to

a steady-state value. Fig. 3.3 shows how the scalar model behaves during two

tension tests, the only difference between the two being the initial value of Λ. One

can clearly see that there is strain softening in the case with the lower value of Λ0.

This is because the initial lack of STZs limits the amount of plastic deformation,

thus the system has no way of relieving itself of the elastic tension when the stress

approaches the “yield stress”. The stress finally sinks back to its steady-state value

when the number of STZs increases to Λ = 1. Notice that ∆2 < Λ2, and that as

long as s < 1, ∆ tries to catch up with sΛ.
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Figure 3.3: During a constant strain rate tension test, the variables in the
zero-dimensional version of the STZ theory react differently for
Λ0 = 0.1 and Λ0 = 1. In both cases µ = 100, ε0 = 0.005, and
Dtot = 0.001. In the test where Λ0 = 0.1, there are initially
fewer STZs, which means less plastic deformation (which is pro-
portional to w). When the stress reaches the “yield stress”, the
system has to wait for Λ to increase before there is a sufficient
amount of STZs to supply enough plastic deformation to relieve
the stress imposed by the constant rate of deformation. This
leads to a spike in the stress before it reaches its steady-state
value. This phenomenon is known as strain softening.



CHAPTER 4

DERIVING THE QUASI-LINEAR TENSORIAL STZ MODEL

A basic framework for describing deformation of matter was introduced in Sec-

tion 2.5. The only part that was left unspecified in Eqs. (2.55) was the plastic rate

of deformation Dpl
ij . Chapter 3 was an attempt to give an intuitive overview of both

the microscopic mechanisms of plastic strain and the dynamics of the continuum

equations of the non-tensorial STZ theory while avoiding detailed mathematical

derivations linking the two. Section 4.1 fills that gap by quantitatively connecting

microscopic non-affine rearrangements to a tensorial continuum formulation de-

scribing plastic deformation. Then Section 4.2 looks at plastic work, presents the

assumption that the rate of creation and annihilation of STZs is proportional to the

plastic dissipation, and discusses different forms of flow observed in experiments

with amorphous metals. Section 4.3 incorporates the STZ description into the

linear elastic framework before Section 4.4 presents the special zero-dimensional

case when the material can be considered uniform. Section 4.5 talks about how

the work done on the system is stored as elastic, plastic, or kinetic energy, or dissi-

pated during plastic flow. Finally, subtle issues of initiating a constant strain-rate

experiment are discussed in Section 4.7.

4.1 From Microscopics to a Mesoscopic Continuum Model

Section 3.1 gave an overview of the STZ model, where plastic flow is described

on the microscopic scale as local, non-affine rearrangements of particles or atoms

in “shear transformation zone”s (STZs). Each STZ can stretch in either of two

directions, and the idea is that when a zone transforms, or flips, from one state to

the other, it contributes to the local plastic strain.

35
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Figure 4.1: A schematic illustration of an STZ as a two-state system. An STZ
can flip between its “+”- and “−”-state, elongating the material
in either of the two perpendicular directions.

Fig. 4.1 is a schematic illustration of an STZ in its two different states. Physi-

cally, these two states represent the elongation of the STZ along either a “+”-axis

or a “−”-axis, where the “+” and “−” axes are perpendicular to each other and

rotated an angle θ in the counter-clockwise direction relative to the x and y axes,

respectively. Note that the choice of the labels “+” and “−” is arbitrary; there is

no physical difference between the two states, since rotating the coordinate system

by π/2 would reverse the labels.

The STZs are assumed to transform between states at a rate that depends on

the local deviatoric stress. To be more precise, consider the rotated coordinate

system shown in Fig. 2.1, where the x′ and y′ axes have been rotated an angle θ

in the counter-clockwise direction relative to the x and y axes, respectively. That

means that the x′-axis is aligned with the “+”-axis, as are the y′ and “−” axes.
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Using the primed notation of Section 2.2,

s′θ = s cos 2θ − τ sin 2θ (4.1)

is the deviatoric stress along the y′ (or “−”) axis (the subscript θ is just a reminder

that the value of s′ depends on the angle θ of the rotated coordinate system).

Given this, define the average rate at which STZs will flip from the “+”-state

to the “−”-state as R[s′θ]. Falk and Langer [30] suggested that the rate should

be proportional to an expression resembling a Boltzmann factor used in thermally

activated processes,

R[s′θ] = R0 exp

[

−∆V ∗(s′θ)

vf

]

with ∆V ∗(s′θ) = V ∗
0 exp

(

−s
′
θ

µ̄

)

, (4.2)

where R0 is an attempt frequency, vf is the free volume per particle (and the quan-

tity analogous to the temperature),1 and ∆V ∗(s′θ) is the excess free volume needed

to activate a transition from a “+” to a “−” state given a stress s′θ. The function

∆V ∗(s′θ) decreases with respect to the stress, which means that as the stress grows

larger, less and less free volume is needed to activate a transition. This function

was chosen to be exponential rather than linear since in the limit of large stresses,

the needed excess volume should approach zero rather than become negative. The

constant µ̄ sets the stress scale and basically determines the yield stress. A lin-

earized version of Eq. (4.2) was used for the simulations in this dissertation; this

approximation, used in the “quasi-linear” version of the model, will be applied and

explained later.

1Apparently, the use of the free volume as an internal state variable is considered
controversial by some; see for example [67] and references therein. The sense in
which the free volume takes part in the STZ theory is perhaps different from the
conventional usage by Spaepen and others (see Chapter 3); in the STZ description,
it seems to be closer in spirit to an effective temperature, where the STZs arise
due to fluctuations in the material.
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As mentioned above, STZs will flip from their “+”-state to the “−”-state at a

rate of R[s′θ]. Since the stress along the x′ (or “+”) axis is given by s′θ−π/2 = −s′θ,

the average rate at which STZs will flip from the “−” to the “+” state must be

given by R[−s′θ]. As a shorthand, write

R+
θ ≡ R[s′θ] and R−

θ ≡ R[s′θ−π/2] = R[−s′θ] . (4.3)

It follows that

R−

θ±π/2 = R+
θ . (4.4)

In the continuum formulation of the STZ theory, individual STZs are averaged

out. Let n(θ) be the local angular distribution of STZs. More precisely, let n(θ)dθ

be proportional to the number of STZs per area (in two dimensions) with their

“+”-axis lying in the interval [θ, θ + dθ〉. The corresponding distribution for the

STZs in the “−” state is given by n(θ − π/2) or n(θ + π/2); since the STZs are

directors, n(θ) has a period of π, or n(θ) ≡ n(θ+mπ) for all integersm. Introducing

another shorthand, let

n+
θ ≡ n(θ) and n−

θ ≡ n(θ − π/2) . (4.5)

With the rate R and the density n(θ) properly defined, the rate equations for

the latter can be written as

ṅ+
θ = R−

θ n
−

θ − R+
θ n

+
θ +

(n∞

2
− n+

θ

)

Γ , (4.6a)

ṅ−

θ = R+
θ n

+
θ − R−

θ n
−

θ +
(n∞

2
− n−

θ

)

Γ . (4.6b)

In both of the above equations, the two first terms take into account only the

transformation, or flipping, of STZs. In the last term, (n∞/2)Γ is responsible

for the creation of new STZs, while n±

θ Γ represents the annihilation of old ones.
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The rate at which STZs are created and annihilated is controlled by Γ, which is

later assumed to be proportional to Q, the energy dissipated through plastic work.

While the rate of annihilation is proportional to the number of STZs present, the

rate of creation is just set proportional to a constant, n∞. It was chosen so that

it would be the steady-state value for the total number of STZs, n−

θ + n+
θ , at the

angle θ, as will become clear in the following discussion.

It has proven convenient to rewrite Eqs. (4.6) using the following definitions:

ntot
θ ≡ n−

θ + n+
θ , n∆

θ ≡ n−

θ − n+
θ , (4.7a)

Cθ ≡
R+
θ +R−

θ

2R0
, Sθ ≡

R+
θ −R−

θ

2R0
, and Tθ ≡

Sθ
Cθ
. (4.7b)

It is important to understand that ntot
θ represents all the STZs at the angle θ.

To repeat, ntot
θ includes all the STZs with either their “+”-axis or their “−”-axis

in the interval θ ∈ [θ, θ + dθ〉. Subsequently, when referring to “the STZs at an

angle θ ”, ntot
θ is what is meant.

Using Eqs. (4.7), one can write

Wθ ≡ R+
θ n

+
θ −R−

θ n
−

θ

= R0(Sθntot
θ − Cθn∆

θ )

= R0Cθ(Tθntot
θ − n∆

θ ) , (4.8)

where the symbol Wθ has been defined for later convenience. Eqs. (4.6) can now

be written as

ṅtot
θ = (n∞ − ntot

θ )Γ , (4.9a)

ṅ∆
θ = 2Wθ − n∆

θ Γ . (4.9b)

As promised earlier, Eq. (4.9a) shows that the steady-state value of ntot
θ , the total

number of STZs at the angle θ, equals n∞. Notice that if ntot
θ is initially uniform
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with respect to θ (a reasonable assumption), Eq. (4.9a) will keep it uniform at all

later times (this does not mean that the average direction in which the STZs are

aligned is uniform; n∆
θ keeps track of that). With this assumption define

ntot ≡ 2

π

∫ π/4

−π/4

ntot
θ dθ = ntot

θ , (4.10)

where the fraction in front of the integral is a normalization factor.

4.1.1 The Plastic Strain Rate

The goal now is to find the plastic strain rate tensor Dpl
ij . Define ∆ε to be the strain

increment occurring in any space containing a single transforming STZ. Thus if an

STZ flips from the “+” to the “−” state, the strain along the “−”-axis increases

by ∆ε in that region, while the strain along the “+”-axis decreases by the same

amount. The latter statement implies that STZ transformations, and thus plastic

deformations, are area conserving. The creation and annihilation of STZs do not

contribute to the plastic strain.

On the mesoscopic scale (that is, in the continuum formulation), the plastic

strain rate along the y′-axis caused by ntot
θ , the STZs at θ, is given by

∆ε b2Wθdθ













plastic strain rate

along y′-axis

due to STZs at θ













, (4.11)

where b2 is the typical size of an STZ [52] (b2 is sometimes referred to as Vz

[30, 47]). Since n±

θ are number densities, Wθ is the net rate of STZs per area at θ

that flip from the “+”-state to the “−”-state. Multiplying this net rate by b2 gives

the fraction of area that, during one unit of time, has experienced a transforming

STZ. Including the factor ∆ε then gives the average increment of strain per unit

time; this is the plastic strain rate.
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Eq. (4.11) only accounts for the STZs that lie in the interval [θ, θ+ dθ〉, and it

gives the plastic strain along y′ rather than y. Consider a strain tensor ε describing

pure shear (that is, the strain tensor is traceless) along the y′-axis:

ε =







−a 0

0 a







′

. (4.12)

As explained in Section 2.2, the prime on the matrix means that the components

are written relative to the (x′, y′) basis, which is rotated an angle θ in the counter-

clockwise direction relative to the (x, y) basis. The tensor ε describes a strain

ε′yy = a along the y′-axis, and a strain ε′xx = −a along the x′-axis, while ε′xy = 0.

Transforming the coordinates of ε to the (x, y) basis, like in Eq. (2.15), the tensor

in Eq. (4.12) can be written as

ε =







−a cos 2θ −a sin 2θ

−a sin 2θ a cos 2θ






= −aDθ , (4.13)

where

D
θ =







cos 2θ sin 2θ

sin 2θ − cos 2θ






(4.14)

is the two-dimensional director matrix [68]. This means that the tensor ε describes

a system with a strain of εyy = a cos 2θ along the y-axis, εxx = −a cos 2θ along the

x-axis, and with εxy = −a sin 2θ.

Applying the same technique to Eq. (4.11), the tensor

D
pl
θ =







−∆ε b2Wθ 0

0 ∆ε b2Wθ







′

(4.15)

describes the plastic strain rate due to the STZs at θ in the basis (x′, y′). Writing

it in the basis (x, y), this becomes

Dpl
θ, ij = −∆ε b2WθDθ

ij (or D
pl
θ = −∆ε b2WθD

θ) . (4.16)
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In order to find the plastic strain resulting from all the STZs at all angles, all that

is left to do is to integrate D
pl
θ over θ:

Dpl
ij =

∫ π/4

−π/4

Dpl
θ, ijdθ =

∫ π/4

−π/4

−∆ε b2WθDθ
ij dθ . (4.17)

4.1.2 Introducing the STZ variables

The distribution function n∆
θ represents the skewness in the alignment of the STZs.

Having written the plastic strain rate (4.11) as a traceless tensor Dpl
ij , it seems

reasonable to do the same with n∆
θ , considering that the expressions for n∆

θ and

Wθ both appear in Eq. (4.9b). Just as in Eq. (4.17), define

nij ≡
∫ π/4

−π/4

−n∆
θ Dθ

ijdθ . (4.18)

On a side note, the Fourier series for n(θ) can be written as

n(θ) =
∞
∑

m=−∞

cme
i2mθ =

∞
∑

m=−∞

am cos 2mθ + bm sin 2mθ , (4.19a)

cm =
1

π

∫ π/2

−π/2

n(θ)e−i2mθdθ , am =
cm + c−m

2
, bm =

i (cm − c−m)

2
, (4.19b)

where am, bm ∈ R and c−m = c∗m since n(θ) is a real function. The prefactor and

limits of integration take into account that n(θ) has a period of π. In terms of

n(θ),

ntot =
2

π

∫ π/2

−π/2

n(θ)dθ , nij =

∫ π/2

−π/2

n(θ)Dθ
ijdθ , (4.20)

from which it follows that ntot = 2a0, nxx = πa1, and nxy = πb1; in other words,

ntot and nij captures the first two moments of the Fourier series of n(θ).

Eqs. (4.17) and (4.18) can now be used to write Eq. (4.9b) in tensor form; if

the latter equation is multiplied by −Dθ
ij and integrated over the quadrant θ ∈

[−π/4, π/4〉, one gets

ṅij =
2

∆ε b2
Dpl
ij − nijΓ . (4.21)
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Define the STZ variables Λ and ∆ij as ntot and nij normalized by the steady-state

value n∞,

Λ ≡ ntot

n∞

and ∆ij ≡
nij
n∞

. (4.22)

Applying Eqs. (4.22) to (4.9a) and (4.21), it follows that

Λ̇ = Γ(1 − Λ) , (4.23a)

∆̇ij =
1

ε0
Dpl
ij − Γ∆ij , (4.23b)

where

ε0 ≡
1

2
∆ε b2n∞ (4.24)

is a parameter that depends on the size and the steady-state density of the STZs,

as well as the amount of strain they induce during transformation.

4.1.3 The Quasi-Linear Model

Before Eqs. (4.23) can be considered complete, the plastic strain rate Dpl
ij needs to

be written in terms of Λ and ∆ij . At this point, the plastic strain rate takes the

form

1

ε0
Dpl
ij =

∫ π/4

−π/4

−Dθ
ij

1

τ θ0

(

Tθ
ntot

n∞

− n∆
θ

n∞

)

dθ , (4.25)

where

1

τ θ0
≡ 2R0Cθ (4.26)

is a time factor that adjusts the rate of plastic strain as a function of the magnitude

and direction of the deviatoric stress. It has been shown that if 1/τ θ0 becomes

small as the stress drops to zero, the material is able to preserve some of the strain

history in its internal variables [30]. The presence of this “internal memory” leads

to hysteresis when a material is repeatedly loaded and unloaded. To simplify the
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model, it is assumed that constant:

τ θ0 ≈ τ0 = constant . (4.27)

The justification for using this approximation is that the simulations presented

in this dissertation did not perform load cycling. Nevertheless, the results from

the numerical simulations presented in Chapters 6 and 7 showed that there was

inhomogeneous plastic flow. This means that some areas in the interior of the

material was able to unload while the ends were strained at a constant rate. The

approximation (4.27) is believed not to have had a qualitative impact on the results

of Chapters 6 and 7, but it might prove essential when considering more complex

processes.

The plastic strain rate can now be written as

1

ε0
Dpl
ij =

1

τ0
(TijΛ − ∆ij) , (4.28)

where

Tij =

∫ π/4

−π/4

−Dθ
ijTθdθ . (4.29)

One more approximation will be made to the model, namely that Tθ is linear

in s′θ. This combined with Eq. (4.27) will be referred to as the “quasi-linear”

approximation.

So far, the form of the rate R[s′θ] has not been specified. Choosing the rate (4.2)

suggested by Falk and Langer [30], and inserting it into Eqs. (4.7b), one can write

Cθ = exp

[

−V
∗
0

vf
cosh

(

s′θ
µ̄

)]

cosh

[

V ∗
0

vf
sinh

(

s′θ
µ̄

)]

, (4.30a)

Sθ = exp

[

−V
∗
0

vf
cosh

(

s′θ
µ̄

)]

sinh

[

V ∗
0

vf
sinh

(

s′θ
µ̄

)]

, (4.30b)

Tθ = tanh

[

V ∗
0

vf
sinh

(

s′θ
µ̄

)]

. (4.30c)
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By Taylor-expanding Eq. (4.30c) around s′θ = 0, one gets

Tθ =

(

V ∗
0

vf µ̄

)

s′θ + O[(s′θ)
3] . (4.31)

The approximation Tθ ≈ (V ∗
0 /vf µ̄)s′θ becomes more accurate as V ∗

0 /vf tends to

zero (the value of µ̄ is irrelevant because the stress typically takes on values in the

range s′θ ∈ [−µ̄, µ̄]). Before inserting this approximation into Eq. (4.29), one can

rewrite the stress s′θ to further simplify the expression.

The maximum shear stress (or the positive principal stress of a traceless or

deviatoric stress tensor) is an invariant of the stress tensor given by

s̄ ≡
√

1

2
sklskl =

√
s2 + τ 2 (4.32)

(some texts write s̄ as τmax). Define Φ to be the principal angle of stress so that

when the components of the deviatoric stress tensor is written in a basis that is

rotated an angle Φ in the counter-clockwise direction, s′Φ ≡ s̄ and τ ′Φ = 0 (Φ = 0

means that s ≡ syy = −sxx = s̄ and τ ≡ sxy = 0, that is, the principal stress axes

are parallel to the x and y axes). Define

Θ ≡ θ − Φ . (4.33)

Since θ = Θ + Φ, Θ is the angle that separates θ and the angle of the principal

stress axes, Φ (see Fig. 4.2). Since

s′Φ = s cos 2Φ − τ sin 2Φ = s̄ (4.34a)

τ ′Φ = τ cos 2Φ + s sin 2Φ = 0 , (4.34b)

it follows, using Eq. (4.1), that

s′θ = s′Θ+Φ = s̄ cos 2Θ . (4.35)
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Figure 4.2: The angle Θ is defined as the difference between Φ, the principal
stress axis, and θ, the current angle, θ = Φ + Θ.

Eq. (4.29) now reads

Tij ≈
(

V ∗
0

vf µ̄

)

s̄

∫ π/4−Φ

−π/4−Φ

−DΘ+Φ
ij cos 2Θ dΘ

= −π
4

(

V ∗
0

vf µ̄

)

s̄DΦ
ij

= λsij , (4.36)

where

λ ≡ π

4

V ∗
0

vf µ̄
. (4.37)

The last equality of Eq. (4.36) used that

sij = −s̄DΦ
ij , (4.38)

which can be deduced from the last expression in Eq. (2.15). The plastic strain
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rate now reads

1

ε0
Dpl
ij =

1

τ0
(λsijΛ − ∆ij) . (4.39)

Eqs. (4.23) together with (4.39) give the equations of motion for the STZ variables

Λ and ∆ij in the quasi-linear model.

4.2 Plastic Work and Dissipation

This section discusses the nature of the plastic work and derives an expression

for Γ, the rate of creation and annihilation of STZs. This derivation is based

on Pechenik’s idea that Γ should be proportional to Q, the dissipative part of

the plastic work [69, 70]. He pursued this conjecture after the current author

discovered that the original expression for Γ, proportional to the rate of all the

plastic work (not just Q), would sometimes turn negative in parts of the material

during unloading, leading to non-physical effects [71].

The energy-balance equation for the plastic work is

Dpl
ijsij =

D

Dt
ψpl(Λ,∆ij) +Q(sij ,Λ,∆ij) , (4.40)

where the left-hand side is the rate of plastic work done on the system. On the

right-hand side, ψpl is the recoverable plastic energy and Q is the rate of dissipation

due to the plastic work.

Pechenik’s idea was that Γ, which is proportional to the rate of creation and

annihilation of STZs, and Q, which is the (positive) rate of energy dissipation due

to plastic deformation, should be similar functions. He thus made the conjecture

that

Q(sij,Λ,∆ij) =
a(Λ)

λ
Γ(sij ,Λ,∆ij) . (4.41)
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Inserting this into Eq. (4.40) gives 2

Dpl
ijsij =

∂ψpl

∂∆ij

D∆ij

Dt +
∂ψpl

∂Λ

DΛ

Dt
+
a(Λ)

λ
Γ . (4.42)

Inserting Eqs. (4.23) gives

Dpl
ijsij =

∂ψpl

∂∆ij

(

1

ε0
Dpl
ij − Γ∆ij

)

+
∂ψpl

∂Λ
Γ(1 − Λ) +

a(Λ)

λ
Γ . (4.43)

Solving for Γ yields

Γ =
λDpl

ij

(

sij − 1
ε0

∂ψpl

∂∆ij

)

a(Λ) + λ∂ψ
pl

∂Λ
(1 − Λ) − λ ∂ψ

pl

∂∆ij
∆ij

. (4.44)

Since Γ is proportional to the rate of dissipation, it has to be positive. The rate

of plastic deformation is given by Eq. (4.39); thus the numerator of Eq. (4.44) can

only be guaranteed to be positive if

∂ψpl

∂∆ij
= ε0

∆ij

λΛ
. (4.45)

Integrating ψpl for each set of indices and combining the results give

ψpl =
ε0
λ

∆̄2

Λ
+ ψpl

0 (Λ) (4.46)

where T̄ 2 ≡ (1/2)TijTij for any tensor Tij , and also T̄ 2 = T 2
s +T 2

τ if Tij is symmetric

and traceless (which is the case for both ∆ij and Dpl
ij ). If a(Λ) is chosen as

a(Λ) = ε0(1 + Λ) − λ
dψpl

0 (Λ)

dΛ
(1 − Λ) , (4.47)

then

Γ =
2Λτ0

(

1
ε0
D̄pl
)2

(1 + Λ)(Λ2 − ∆̄2)
, (4.48)

2If ∆ij is traceless and symmetric then, technically, the first term on the right-
hand side of Eq. (4.42) should have a factor of 1/2. This factor would propagate
into Eqs. (4.43) and (4.44), and Eq. (4.45) would have a factor of 2 on the right-
hand side. Fortunately, the remaining equations would be unaffected, which means
that the expressions for Γ, a, ψpl, and ψpl

0 do not depend on whether or not the
tensor ∆ij is symmetric and traceless.
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which is always positive.

It is not obvious what the form of ψpl
0 (Λ) should be. Choosing

ψpl
0 (Λ) =

ε0
λ

Λ (4.49)

gives

a(Λ) = 2ε0Λ (4.50)

and

ψpl =
ε0
λ

(

Λ2 + ∆̄2

Λ

)

. (4.51)

This choice is enticing, since it makes Γ proportional to the rate of dissipation per

STZ.

So far, dividing the plastic work into plastic dissipation and stored plastic

energy has not been much more than a mathematical exercise. What exactly is

“stored plastic energy”? According to the STZ model, plastic deformation occurs

when the STZs flip. This deformation, causing the internal stress distribution to

change, will then flip even more STZs as well as creating new ones and annihilating

existing ones. It takes energy to flip an STZ. The work done on it could even be

considered reversible, if one could make the STZ flip back again. Then again, the

STZ could make it back to its original position without releasing any energy by

being annihilated and recreated. Since, theoretically, one could regain the energy in

the flipped STZ if one could make all the STZ flip back again without any of them

being annihilated, the energy stored in the flipped STZs seem like a reasonable

interpretation of the stored plastic energy. In practice, though, some of the stored

plastic energy would probably be lost if the STZs were to flip back, since this

flipping would cause further deformations and thus more creation and annihilation

of STZs. The plastic dissipation Q can be interpreted as the energy lost when an
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STZ is annihilated and recreated.

Various terms exist to describe strain response in amorphous solids, although

they are not always used consistently; the following is an effort to summarize the

explanations given in [21, 28, 55, 72]:

Homogeneous flow :

• Elastic response is reversible upon removal of stress, time independent

(instantaneous), and linear with respect to the stress.

• Anelastic response is reversible upon removal of stress (although some

annealing at an elevated temperature might be necessary to fully recover

the anelastic strain), and time dependent (anelasticity is sometimes

called “delayed elasticity”). There can be both linear and non-linear

anelastic strain, but only the former will be considered below.

• Visco-elastic or visco-plastic response is permanent and time depen-

dent. This is often just referred to as homogeneous (permanent) plastic

flow. The relationship between the stress and the strain rate can be both

linear and non-linear, the latter usually occurring at higher stresses.

Inhomogeneous flow is caused by plastic flow confined to thin shear bands. The

stress is usually strain rate insensitive.

In addition, the term “inelastic” usually refers to everything except the linear

elastic response. Note, though, that “plastic” and “inelastic” are often used inter-

changeably, as is the case in this manuscript.

Consider a material specimen undergoing homogeneous flow while subjected to

a constant stress. The sample will immediately respond elastically with a strain

proportional to the stress (the speed of the elastic response is only limited by the
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speed of sound in the material). The specimen will then continue to strain, but

more slowly. If the stress is low (and especially if the temperature is low, too), the

material will come to a halt after a while, otherwise it will settle into a steady-state

homogeneous plastic flow.

Imagine now that the stress is removed. The elastic strain is immediately

recovered. The sample will then continue to contract for a while, recovering the

anelastic strain. When the strain recovery has converged, only the permanent

plastic strain remains.

The classification of the strain response given above seems to match well with

the deformation mechanisms seen in the STZ theory. The linear elastic response

is in the model by construction; the next section shows how it is mathematically

combined with the STZ description. The anelastic strain seems to match up well

with the stored plastic energy ψpl, or equivalently, the flipped STZs. When the

stress is released, the work that was needed to flip the STZs can be recovered as the

zones transform back to their original position. The permanent deformation occurs

when STZs are annihilated, preventing them from flipping back. The dissipated

energy Q is thus the stored plastic energy that was lost when the STZs were

annihilated.

Again, notice the ambiguous use of the word “plastic”. In Eq. (4.40), both the

reversible (anelastic) and dissipative (permanent plastic) terms contribute to the

plastic (inelastic) work. In this dissertation, the term “plastic deformation” refers

to both the anelastic and permanent plastic response.
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4.3 Combining the STZ theory with Linear Elasticity

So far, this chapter has focused on formulating a continuum description of plastic

deformation starting from a microscopic point of view. This description, repre-

sented by Eqs. (4.23), (4.39), and (4.48), can now be combined with the linear

elastic framework (2.55) and (2.56) presented earlier:

(

1 − ν2

1 + ν2

)

1

2µ

Dp

Dt
= −1

2
∇ · v , (4.52a)

1

2µ

Dsij
Dt = D̃tot

ij −Dpl
ij , (4.52b)

ρ
Dvi
Dt

=
∂sji
∂xj

− ∂p

∂xi
, (4.52c)

DΛ

Dt
= Γ(1 − Λ) , (4.52d)

D∆ij

Dt =
1

ε0
Dpl
ij − Γ∆ij , (4.52e)

with

D̃tot
ij =

1

2

(

∂vi
∂xj

+
∂vj
∂xi

)

− 1

2
∇ · v , 1

ε0
Dpl
ij =

1

τ0
(λΛsij − ∆ij) , (4.52f)

and

Γ =
2Λτ0

(

1
ε0
D̄pl
)2

(1 + Λ)(Λ2 − ∆̄2)
. (4.52g)

Eqs. (4.52) are referred to as the quasi-linear tensorial STZ model in two dimen-

sions. When combined with boundary conditions, it can be used to describe both

the elastic and plastic dynamics of an amorphous solid.

4.4 A Scalar Version of the STZ Model

Chapter 3 explored a zero-dimensional version of the STZ model, which is valid

when the system can be considered uniform throughout. Without the spatial
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variation to worry about, the tensor notation of (4.52) can be eliminated, and

the equations can be simplified a great deal. More importantly, one can apply

a constant strain rate, as well as boundary conditions, without introducing any

geometrical effects. Note that since the equations of motion only contain the

gradients of the velocities, and not the velocities themselves, these gradients can

easily be included in the zero-dimensional description as long as they are uniform

throughout the system. Since the stresses, as well as Λ and ∆ij , are used explicitly

in the equations, their gradients all have to be set to zero.

Aligning the y-axis along the direction of principal stress, one can define

s ≡ syy = −sxx , ∆ ≡ ∆yy = −∆xx , Dpl ≡ Dpl
yy = −Dpl

xx , (4.53a)

sxy = ∆xy = Dpl
xy = 0 , (4.53b)

∂sij
∂xk

=
∂∆ij

∂xk
=

∂Λ

∂xk
= 0 ∀i, j, k ∈ {x, y, z} , (4.53c)

and

Dtot ≡ Dtot
yy =

∂vy
∂y

, Del ≡ Del
yy . (4.53d)

Further,

s̄ = |s| and ∆̄ = |∆| . (4.53e)

Using Eqs. (4.53), Eqs. (4.52) now read

Λ̇ = Γ(1 − Λ) (4.54a)

∆̇ = w − Γ∆ (4.54b)

w ≡ 1

ε0
Dpl =

1

τ0
(λsΛ − ∆) (4.54c)

Γ = τ0

(

2Λ

1 + Λ

)

w2

Λ2 − ∆2
. (4.54d)
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Since there are no gradients in s, ∆, or Λ, there are no advective terms. Further,

since ∂xvy = ∂yvx = 0, there are no rotational derivatives either.

If the system is subjected to a constant strain rate rather than to a constant

stress, an additional requirement is needed to determine the hydrostatic pressure

p. The numerical simulations in this dissertation used that σxx = 0, which means

that p = −s and σyy = 2s. In this case, Eq. (2.54a) becomes

εxx = − s

2µ

2ν2

1 + ν2

, (4.55a)

εyy =
s

2µ

2

1 + ν2
. (4.55b)

According to Eq. (2.51), the total rate of deformation is assumed to be a linear

combination of the elastic and plastic parts, Dtot ≈ Del +Dpl. If the total strain

rate Dtot is held constant, then Eq. (2.53) with the time derivative of Eq. (4.55b)

yields

ṡ = µ(1 + ν2)(D
tot −Dpl)

= µ(1 + ν2)(D
tot − ε0w) . (4.56)

Eqs. (4.54) and (4.56) are referred to as the zero-dimensional, quasi-linear STZ

model.

4.5 Energy Balance

When a force applied to a material causes it to accelerate or deform, the force is

doing work on the material. Define the rate of this work as Pexternal (the P stands

for “power”). For example, in the numerical simulations discussed in Chapter 7, a

two-dimensional square specimen was subjected to uniaxial tension by applying a

force F to the top edge. The force and the edge were parallel and perpendicular
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to the y-axis, respectively. In this case, the rate of work done on the system was

Pexternal = F vy , (4.57)

where vy was the velocity of the top edge. This section will discuss how the energy

from applied work can be absorbed by a two-dimensional material as stored elastic

and plastic energy, kinetic energy, and dissipation due to plastic deformations.

Using Eq. (2.54a) for the elastic strain, the stored elastic energy density is

found to be

ψel =
σijεij

2
=

1

2µ

[(

1 − ν2

1 + ν2

)

p2 + s2 + τ 2

]

. (4.58)

As seen in Section 4.2, the plastic work done on the system can be divided into

two parts: the stored plastic energy density,

ψpl =
ε0
λ

(

Λ2 + ∆2
s + ∆2

τ

Λ

)

, (4.59)

and the dissipation due to plastic deformations,

Q =
2ε0Λ

λ
Γ , with Γ =

1

τ0

2Λ

1 + Λ

[

(λΛs− ∆s)
2 + (λΛτ − ∆τ )

2

Λ2 − ∆2
s − ∆2

τ

]

. (4.60)

The kinetic energy density is given by

ψkin =
1

2
ρv2 =

1

2
ρv2

x +
1

2
ρv2

y . (4.61)

As discussed in Section 4.2, the rate of plastic work is given by Eq. (4.40). The

rate of work due to the total deformation, Dtot
ij σij , is found by adding the elastic

work, since it is assumed that Dtot = Del +Dpl:

Dtot
ij σij = Del

ijσij +Dpl
ijσij =

D

Dt
ψel +

D

Dt
ψpl +Q . (4.62)

Both Eqs. (4.40) and (4.62) are true regardless of any assumptions about ψpl
0 , like

the one given in Eq. (4.49).
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Eqs. (4.58), (4.59), and (4.61) give the elastic, plastic, and kinetic energy densi-

ties, while Eq. (4.60) gives the rate of plastically dissipated energy per area. These

quantities are all densities, so to find the total rate at which energy is absorbed

into the system, they must be integrated over the area of the material:

Pabsorbed =

∫

A

[

D

Dt

(

ψel + ψpl + ψkin
)

+Q

]

dA . (4.63)

With all the energy accounted for, having energy balance means that the total

rate of energy Pexternal supplied to the system, for example by the force mentioned

earlier in this section, must equal the energy that is absorbed:

Pexternal = Pabsorbed . (4.64)

4.6 Reduced Units

By introducing reduced units, it is possible to eliminate some of the parameters

from the equations and simultaneously rescale the variables making their range of

values lie closer to unity, the latter being favorable in numerical procedures. In this

dissertation, the variables were rescaled by the basic units S (stress or pressure),

L (length), and T (time):

σij →
σij
S

and vi →
vi
S

(4.65)

(Λ and ∆ij were already unit-less). By choosing these units to match parameters

in the model,

S = 1/λ, T = τ0, and L = L, (4.66)

where L is a length representative of the size of the system, those parameters were

rescaled to unity:

λ→ λS = 1, τ0 → τ0/T = 1, and L→ L/L = 1 . (4.67)
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The introduction of reduced units would rescale the other parameters as well, for

example

ρ→ ρ
L

2

ST2
and µ→ µ

S
. (4.68)

In the remainder of the dissertation, all the equations will be written using reduced

units.

4.7 Initial Strain Rate

The procedure of initiating a constant strain rate tension test is not as straight

forward as it might seem at first glance. One option is to carefully ramp up the

strain rate starting from a material at rest. Unfortunately, the way the strain rate

is ramped up will affect the results, especially for high strain rates. On one hand,

if the strain rate is ramped up too fast, the material will experience enormous

stresses at the grip and the outcome will then depend on geometrical details of

how the strain rate was applied to the material. On the other hand, if the strain

rate is ramped up too slowly, the material will reach the yield stress long before

the strain rate has reached its final value, thus affecting the stress-strain curve. It

therefore seems worthwhile to see if one can start the numerical experiment already

pre-set at the given strain rate, and calculate what values the other fields should

take given the boundary conditions and uniform stresses.

For the numerical simulations discussed later in this dissertation, the initial con-

figuration is approximately a uniform rectangular block of material, which means

that the assumptions given in Section 4.4 are appropriate. In addition, some more

assumptions are needed if the initial values of the fields in Eqs. (4.54) are to be

uniquely specified. For instance, either s or ∆ needs to be assigned a value. Here,

∆ = 0 seems reasonable, since it is vital that ∆2 < Λ2 at all times; it also greatly
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simplifies the equations:

Λ̇ =

(

1 − Λ

1 + Λ

)

2w2

Λ

∆̇ = w

ṡ = µ(1 + ν2)(D
tot − ε0w)































when ∆ = 0 . (4.69)

As explained in Section 4.6, the equations are written in reduced units, which is

equivalent to setting λ = τ0 = 1. Conveniently, Λ̇ is small when Λ is close to zero

or one (the largest value for Λ̇ happens when Λ = 1/2). It will be assumed for the

sake of calculating the initial field values that Λ is constant.

The next assumption will be that

1

ε0
Ḋpl = ẇ = Λṡ− ∆̇ = 0 . (4.70)

Although the reason might not be immediately obvious, one bad side-effect of not

having the correct field values during a two-dimensional numerical simulation is

that the stresses will oscillate. Keeping w constant means that both s and ∆ will

grow at a steady rate (at least in the beginning while ∆ = 0), and this will ensure

a non-oscillatory start. Using Eqs. (4.69) to solve (4.70) gives (at t = 0)

s(0) =
Dtot

1
µ(1+ν2)

+ ε0Λ0

ṡ(0) = s(0)

∆̇(0) = Λ0s(0)































assuming ∆(0) = 0 and Λ̇(0) ≈ 0 , (4.71)

where Dtot and Λ0 are given. In addition to setting the initial values for the stresses

and STZ variables, it is important that the velocity gradients are set correctly. The

gradients are given by

∂vx
∂x

= Dtot
xx and

∂vy
∂y

= Dtot
yy ≡ Dtot . (4.72)
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To find ∂xvx in terms of Dtot, remember that

Del
xx = −ν2D

el
yy and Dpl

xx = −Dpl
yy . (4.73)

Combining this with the approximation Dtot ≈ Del +Dpl, or

Dtot
xx ≈ Del

xx +Dpl
xx and Dtot

yy ≈ Del
yy +Dpl

yy , (4.74)

one can write

Dtot
xx + ν2D

tot + (1 − ν2)D
pl = 0 . (4.75)

Solving for Dtot
xx at time t = 0, and using that Dpl(0) = ε0w(0) = ε0Λ0s(0), one

arrives at

∂vx(0)

∂x
= −ν2 + Λ0ε0µ(1 + ν2)

1 + Λ0ε0µ(1 + ν2)
Dtot . (4.76)

It is important to emphasize that the initial values calculated in this section

are only valid when s(0) < 1, ∆(0) = 0, and Λ̇(0) ≈ 0. If this is not the case, the

fields (and particularly the velocities) will tend to oscillate, and could drastically

change the results. When parameters are chosen so that s(0) is close to unity,

one should proceed with caution; a system with such parameters will be highly

sensitive to how the strain rate is initiated in a real experiment.



CHAPTER 5

NUMERICAL SETUP

In order to further explore the STZ theory presented in previous chapters, a cou-

ple of two-dimensional geometrical configurations were implemented and simulated

numerically. For this purpose, a C++-program using finite-difference algorithms

on a regular grid with a second-order explicit time-stepping scheme to integrate

the equations was written from scratch. This chapter will discuss some techni-

cal details with regards to the numerical implementation of the model, including

mapping of the variables onto a unit square, finite-difference and time-stepping

approximations, and boundary conditions.

5.1 Overview

The two-dimensional STZ theory was implemented numerically in order to simulate

uniaxial tension experiments where material specimens were strained at constant

rates. The velocity was controlled along the top and bottom edges (the “grips”),

while the left and right boundaries were assumed to have no normal stresses and

were allowed to deform; see Fig. 5.1.

Two sets of simulations were performed; in the first set the material was made to

neck (Chapter 6), while in the second set the samples were given rough boundaries

to encourage the formation of shear bands (Chapter 7). In the necking simulations,

a small indentation was applied at the center of the material to break the symmetry

and to encourage the neck to form in the middle. In addition, the material was

assumed to be symmetric across both the x- and y-axis, so only a quarter of the

system was modeled numerically.

60
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Figure 5.1: The geometrical setup of the two-dimensional simulations. A
constant strain rate was applied to the rigid ends at Y (t) by ad-
justing the velocity. The free boundaries at X(y, t), X0(y, t), and
X1(y, t) had no normal stresses, that is, σnn = 0. In the necking
simulations on the left, the material was assumed to be symmet-
ric across the x and y axes; thus only the upper right-hand corner
of the material was actually simulated. In the simulations on the
right, the lower edge was held fixed.

In the simulations with rough boundaries, the left and right edges were made

stress-free and independent of each other, and no symmetry assumptions were

used. The bottom of the material was held fixed while the top was subjected to a

constant strain rate.

The rest of this chapter will discuss some of the details of the implementation.

That includes the mapping of the coordinates onto a unit square, the discrete

derivatives, the time integration, and the addition of numerical viscosity to add
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stability. Finally, the implementation of the boundary conditions are discussed in

detail.

5.2 Mapping the Variables onto a Unit Square

One aim when introducing the two-dimensional model was to find out how it dif-

fered from the zero-dimensional description, in particular with respect to geometri-

cal inhomogeneities. After deciding to investigate constant strain rate simulations,

it seemed sufficient to only allow the sides to deform, while keeping the grips

straight. It was assumed that the free boundaries could be described by func-

tions that were single valued: X(y, t) for the necking simulations, or X0(y, t) and

X1(y, t) in the case of the model without symmetry assumptions. The position of

the grips was described by a function only dependent on time, Y (t). With these

assumptions, the material was easily mapped onto a unit square with coordinates

ζx ∈ [0, 1] and ζy ∈ [0, 1]. For the necking simulations with the axis symmetries,

the mapping was

ζx =
x

X(y, t)
, ζy =

y

Y (t)
, (5.1)

while the simulations with the free boundaries needed the slightly more general

transformation

ζx ≡
x−X0(y, t)

X1(y, t) −X0(y, t)
, ζy ≡

y

Y (t)
. (5.2)

See Fig. 5.2 for an illustration. The first-order derivatives would then take the
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Figure 5.2: For the necking simulations, the deformed area x ∈ [0, X(y, t)],
y ∈ [0, Y (t)] was mapped onto the unit square ζx ∈ [0, 1], ζy ∈
[0, 1]. Similarly, the non-symmetric simulations (not shown here)
mapped the area x ∈ [X0(y, t), X1(y, t)], y ∈ [0, Y (t)] onto the
same unit square.

form1

∂

∂x
=

1

(X 1 − X 0)

∂

∂ζx
, (5.3a)

∂

∂y
=

1

Y

(

∂

∂ζy
− ωxy

∂

∂ζx

)

, (5.3b)

where

ωxy =
1

(X 1 − X 0)

[

ζx
∂X 1

∂ζy
+ (1 − ζx)

∂X 0

∂ζy

]

. (5.3c)

1The derivation of the temporal and spatial derivatives in the new coordinates,
as well as the transformed equations of motion, can be found in Appendix B.
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In the equations for the derivatives, the deforming boundaries needed to be written

as functions of ζy rather than y, so X 0 ≡ X 0(ζy, t) and X 1 ≡ X 1(ζy, t) were used

instead of X0(y, t) and X1(y, t), respectively. For the necking simulations, the

expressions can be simplified by setting X 1 → X and X 0 → 0.

The advantage of mapping the coordinates using Eqs. (5.1) and (5.2) was that

the calculations could be done on a regular grid where the values of the fields were

discretized into equally spaced nodes. The disadvantage was that the operators,

like the first-order derivatives shown above, became more complicated.

Rather than tracking the boundaries by mapping the coordinate system onto

a unit square, the phase-field [73] and level-set [74, 75] methods were briefly con-

sidered, although this approach would have been much more expensive computa-

tionally. At least in the initial stages of the simulations, the geometry was simple

enough that the most compelling choice was to track the boundary by mapping the

material onto the unit square so that the boundary X(y, t) of the sample became

single valued and coincided with the boundary of the grid. In the later stages in

some of the cases presented in Chapters 6 and 7, the simulations showed signs

of shear banding that induced sharp inhomogeneous flows; these results should

be interpreted with the restricted geometry in mind, and it might be interesting

in future numerical investigations to loosen those restrictions (perhaps by using

the aforementioned methods) when exploring the dynamics both in the limit of

extreme deformations and in more complicated geometries.

5.3 Discretized Gradients

The simulations were carried out on a uniform rectangular grid using finite-diff-

erence approximations for the spatial derivatives and an explicit time stepping
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scheme. The continuous fields were discretized onto a grid with Nx nodes in

the x-direction and Ny nodes in the y-direction. In terms of the transformed

coordinates (5.1) and (5.2), the distance between the nodes were ∆ζx = 1/(Nx−1)

and ∆ζy = 1/(Ny − 1); see Fig. 5.2.

Since the fields were discretized, approximations involving the grid points were

needed to calculate the necessary gradients required by the equations of motion.

The values of the expressions ∂/∂ζx and ∂/∂ζy in Eqs. (5.3) (the grid derivatives)

at any grid point in the bulk were approximated by calculating the slope between

the nodes on either side of that grid point:

∂u

∂ζ

∣

∣

∣

∣

ζ=i∆ζ

→ ui+1 − ui−1

2∆ζ
(bulk) , (5.4a)

where ζ was either ζx or ζy. This is the central difference approximation, and it is

accurate to second order.

Special care was needed at the boundaries. There were two types, the ones

that were at the edge of the material and the ones that bordered to a symmetric

image (the latter only applied to the necking calculations). For the former type,

the grid-derivatives were estimated through extrapolation as

∂u

∂ζ

∣

∣

∣

∣

ζ=i∆ζ

→ 3ui − 4ui−1 + ui−2

2∆ζ
(edge) . (5.4b)

The fields were assumed to be symmetric or anti-symmetric across the symmetry-

axes, and the discretized equations for the bulk could still be applied to the latter

type. The boundary conditions will be discussed further in Section 5.6.

5.4 Time Stepping

The fields were integrated forward in time using the mid-point method, also known

as the second-order Runga-Kutta scheme [76]. It is an explicit integration algo-
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rithm which is second-order accurate in time. The details of the implementation

are given below.

Start by writing the (analytic) equations of motion for the fields as

∂u

∂t
= f [u] , (5.5)

where u = {u1, u2, . . . , um} contains all the m fields of the model (in Chapters 6

and 7 the fields were: the pressure p, the stresses s and τ , the components of the

velocity vx and vy, and the STZ variables ∆s, ∆τ , and Λ). Given the fields un at

time t = n∆t, the values un+1 at time t = t+ ∆t = (n + 1)∆t were calculated as

follows:

ũn+1 = un + f [un]∆t , (5.6a)

un+1 = un +
1

2
(f [un] + f [ũn+1])∆t . (5.6b)

The simulations used an adaptive time-step technique called step-doubling. The

details are described in Section 16.2 of Numerical Recipes [76]. The general idea,

illustrated in Fig. 5.3, is that first, the system un
original is integrated forward twice

using a time-step of ∆t, giving un+2
twice. From the original values un

original, the system

is again integrated forward in time, only now the time-step is 2∆t, yielding un+2
once.

The difference |un+2
once − un+2

twice| is then used to monitor the accuracy; if the error is

low enough, the results un+2
twice are accepted, otherwise they have to be recalculated

from un
original using a smaller time-step.

5.5 Numerical Viscosity and Stability

As explained in Section 5.3, all the spatial first-order derivatives were approximated

by a central-difference formula. Since the equations of motion (4.52) had no higher-

order spatial derivatives, the grid points had a tendency to become “decoupled”
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∆ tt+ t+t time2 

Figure 5.3: The step-doubling technique was used to control the accuracy
of the simulations. The fields were integrated twice, first in two
steps using a time-step of ∆t (utwice), then in one step using
a time-step of 2∆t (uonce). The time-step was then adjusted
according to the difference in the results.

into two sets of nodes like the black and white squares on a chess board. The

easiest way to remedy this was to add a small amount of numerical viscosity. If

the original equations of motion were given by Eq. (5.5), then viscosity could be

included by adding a diffusion term

∂u

∂t
= f [u] + η∇2u , (5.7)

where η is the strength of the numerical viscosity. Some care was needed to make

sure that the new term behaved properly. The three issues that will be discussed

below are implementation, stability, and how it affected the physical results.

Two questions that arose during implementation were, firstly, whether to in-

clude the diffusion for all the fields or just some, and secondly, whether or not

it should be written in transformed coordinates (that is, mapped onto the unit

square). After extensive investigation, it was found that the most effective ap-

proach was to add the viscosity to the velocities only; they were usually the first

fields to go unstable, and as long as they were under control, the simulations did
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fine. It is also worth noting that it was usually the velocities, through the adaptive

time-step algorithm described in Section 5.4, that limited the size of the time-steps.

With regards to the transformed coordinates, the purpose of the damping term

was to “re-couple” those black and white squares on the chess board mentioned

above. This was best done by implementing the diffusion term as

∂2u

∂t2

∣

∣

∣

∣

ζ=i∆ζ

→ η

(

ui+1,j − 2ui,j + ui−1,j

∆ζ2
x

+
ui,j+1 − 2ui,j + ui,j−1

∆ζ2
y

)

(bulk) . (5.8a)

Mapping the Laplacian onto the unit square would turn it into a relatively compli-

cated expression with many terms containing mixed derivatives of both first and

second order. The diffusion term was intended as a numerical tool, so it was best

to keep it simple with respect to the grid. The downside to not transforming the

Laplacian was that its physical meaning became muddled. If the Laplacian were to

be transformed, it would be a genuine viscosity term (when added to the equations

of motion for the velocities).

On the boundaries (apart from the ones separating the symmetric images), the

second derivative was set to zero:

∂2u

∂t2

∣

∣

∣

∣

ζ=i∆ζ

→ 0 (edge) . (5.8b)

Trying to calculate the second derivative by extrapolation at the edge, as was done

for the first-order derivative, would lead to decreased numerical stability, making

the behavior of the damping term contradictory to its purpose.

The purpose of the viscosity term was, as mentioned earlier, to make the nu-

merical scheme more stable by creating a greater coupling between the grid points.

However, when using explicit time-stepping schemes like the mid-point method,

the Laplacian could have the opposite effect if the time-step was made too large.

Section A.2.4 shows that the upper limit for the time-step in order to guarantee
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stability for all wavelengths is given by

∆t <
1

2η

1
1

∆ζ2x
+ 1

∆ζ2y

. (5.9)

Since the added viscosity was only meant as a numerical tool, it was important

to monitor any changes it made to the physical results. The influence of the

viscosity was minimized by performing successive runs with smaller and smaller

values of η. If the numerical viscosity was chosen too high, the results would

look nice and smooth, but when compared to simulations with lower values of η

it became clear that the added viscosity was smearing out sharp features such as

shear bands. On the other hand, when too small values of η were used, large

gradients caused by the “de-coupling” would make the simulations more unstable.

This was particularly pronounced at the border (where values were calculated

through extrapolation) and in larger grids.

The simulations were most sensitive to the value of η at low strain rates, ba-

sically because there was more time (per strain) to dampen out the velocities.

When running as slow as Dtot = 10−5 on the larger (more unstable) grids used

in Chapter 7, there were no values of η that gave satisfactory results. Even for

the smaller grids in the necking simulations of Chapter 6, the slowest strain rate

Dtot = 10−5 was hard to accommodate. In the end, it was found that η = 0.02

(which in fact turned out to be a good choice for all the simulations) enabled the

slowest simulation to reach 5% strain while having only a small impact on the

physical results. The influence due to the exact choice of η for higher strain rates

was usually imperceptible.
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Table 5.1: This table shows what symmetry conditions were imposed on the
fields in the necking calculations across the boundaries between
the symmetric images in Fig. 5.2. The fields were: the pressure
p, the stress-tensor components s and τ and corresponding STZ
variables ∆s and ∆τ , the relative density of STZs Λ, and the
velocity components vx and vy.

symmetric anti-symmetric

boundary parallel to x-axis p, s, ∆s, Λ, vx τ , ∆τ , vy

boundary parallel to y-axis p, s, ∆s, Λ, vy τ , ∆τ , vx

5.6 Boundary Conditions

In the bulk, the dynamics of the material was calculated from Eqs. (4.52) (with

the numerical viscosity (5.7) added) and mapped onto the coordinates ζx and ζy

using Eqs. (5.1) or (5.2), and then discretized using Eqs. (5.4a) and (5.8a).

On the boundary of the grid on which the material was simulated, special care

was needed. Some of the fields had their node values at the edge set explicitly,

while others had these values determined by extrapolating the values calculated

for the bulk or using symmetry conditions.

In the necking simulations, special symmetry conditions were applied to the

boundaries between the grid and its symmetric images (the x-axis and y-axis in

Fig. 5.2). At these boundaries, each field was either considered symmetric or anti-

symmetric; Table 5.1 shows which fields fell into which category across each of

the two applicable boundaries. A symmetric boundary condition u−i = ui simply

meant that the gradient across this boundary had to be zero, and that the values of

the nodes were mirrored on the other side. An anti-symmetric condition u−i = −ui

meant that the value on the boundary was zero and that values on opposite sides
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had opposite signs.

At all the outer boundaries, most of the values were calculated by extrapolating

from the bulk using Eqs. (5.4b) and (5.8b), although some were set explicitly; the

rest of this section will describe how this was implemented.

All the simulations were done at constant strain rate. This was enforced by

controlling the y-component of the velocity, vy, at the grips (the top and bottom

boundaries in Fig. 5.1). For example, in the necking simulations the grip velocity

was given by

vy[x, y = ±Y (t), t] = ±Y (t)Dtot , (5.10)

where Dtot was the constant strain rate. Since the velocity was applied to all the

nodes along the top and bottom, these edges remained straight. The position of

the edge as a function of time, using that vy[x, y = Y (t), t] = ∂tY (t), was therefore

Y (t) = Y (0) exp
(

tDtot
)

. (5.11)

In addition to controlling vy, the variables τ and ∆τ were kept at zero along the

grips.

At the free boundaries, which comprised X(y, t) in the necking simulations

and X0(y, t) and X1(y, t) in the others, the normal stress σnn and shear stress σnt

were set to zero, while the tangential stress σtt was left untouched. Since these

boundaries could deform, the stresses had to be written in a locally rotated frame

of reference at each node. θ was defined as the angle through which X(y, t) was

rotated in the counter-clockwise direction, where θ = 0 meant that the boundary

was parallel to the y-axis; see Fig. 5.4. Using Xy ≡ ∂yX(y, t), the free boundary
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Figure 5.4: θ was defined as the angle through which X(y, t) was rotated in
the counter-clockwise direction.

and θ were related by

tan θ = −Xy , tan 2θ =
−2Xy

1 −X2
y

,

sin θ =
−Xy

√

1 +X2
y

, sin 2θ =
−2Xy

1 +X2
y

,

cos θ =
1

√

1 +X2
y

, cos 2θ =
1 −X2

y

1 +X2
y

.

(5.12)

Using Eq. (2.11b), the free-boundary conditions can be written as

σnn = σ′
xx = −p− s cos 2θ + τ sin 2θ = 0 (no normal stress) , (5.13a)

σnt = σ′
xy = τ cos 2θ + s sin 2θ = 0 (no shear stress) , (5.13b)

σtt = σ′
yy = −p+ s cos 2θ − τ sin 2θ = σ̃tt (unaltered tang. stress) , (5.13c)
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where the indices n and t stand for the normal and tangential components of the

stress and σ̃tt was the original value of the tangential stress.

Since the simulations had the stresses written in terms of p, s, and τ , the

boundary conditions (5.13) had to be applied to those fields. Their new values

were found by solving Eqs. (5.13), giving

p = −1

2
σ̃tt , (5.14a)

s =
1

2
σ̃tt cos 2θ , (5.14b)

τ = −1

2
σ̃tt sin 2θ . (5.14c)

Surface tension could be added at the boundary by using σnn = γκ. This was

done for some earlier simulations that are not discussed in this dissertation. The

positive constant γ determines the amount of surface tension, and

κ =
∂2
yX

[1 +X2
y ]

3/2
(5.15)

is the curvature of the boundary. The latter is positive if the boundary is concave

(necking), and negative if it is convex (bulging). When surface tension is included,

the new values for p, s, and τ would be

p = −1

2
(σ̃tt + γκ) , (5.16a)

s =
1

2
(σ̃tt − γκ) cos 2θ , (5.16b)

τ = −1

2
(σ̃tt − γκ) sin 2θ . (5.16c)

The boundaries X(y, t), X0(y, t), and X1(y, t) also had some of their values

set explicitly. Since stresses were large in the corners of the samples, forcing the

boundaries to be flat there improved stability dramatically. This was done by

setting the values of the two nodes closest to the grips in each corner.
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5.7 Change of Area in a Uniform Two-Dimensional Solid

One of the approximations in the two-dimensional tensorial STZ model was that

the material density ρ remained constant, or equivalently, that the material was

incompressible. While this was true by construction for the plastic deformation,

the trace of the elastic strain tensor did not vanish. It was possible to find the

parameter ranges for which the system was approximately incompressible by mea-

suring the change in density while varying the parameter values. Note that this

problem is not present in the zero-dimensional theory, since this description has

no inertia nor elastic deformation.

For a given stress, the strain in an elastic material is given by Eqs. (4.55), where

εxx = ln(Lx/Lx0) and εyy = ln(Ly/Ly0). For a two-dimensional, rectangular piece

of elastic material, the area A is given by

A = LxLy

= Lx0Ly0 exp(εxx + εyy)

= A0 exp

(

s

µ

1 − ν2

1 + ν2

)

. (5.17)

Defining the change in area as ∆A ≡ |A− A0|, one can write

∆A

A0
=

∣

∣

∣

∣

exp

(

s

µ

1 − ν2

1 + ν2

)

− 1

∣

∣

∣

∣

. (5.18)

Eq. (5.18) is plotted in Fig. 5.5 for certain values of s, the positive and negative

stresses representing tensile and compressive loads, respectively. According to

Eq. (5.18), choosing µ = 100 with ν2 = 0.5 would give ∆A/A0 ≈ 0.3% when

s = 1 (the “yield stress”), and ∆A/A0 ≈ 3% when s = 10. For µ = 10, the relative

change in area is becoming uncomfortably high even at s = 1, where ∆A/A0 ≈ 3%.

Conversely, insisting that ∆A/A0 < 1% requires that µ > 34 at s = 1 and µ > 67
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Figure 5.5: The shear modulus µ plotted against the relative change of area
∆A/A0 due to elastic deformation for a few selected values of
the stress s. The Poisson ratio was ν2 = 0.5. With µ = 100 and
s = 1 (the “yield stress”), the elastic deformation would increase
the area by about 0.3%. As the stress increases, the area changes
further.

at s = 2. More generally,

∆A

A0
< r requires µ >















(

1−ν2
1+ν2

)

s
ln(1+r)

for s > 0, r > 0

(

1−ν2
1+ν2

)

s
ln(1−r)

for s < 0, r ∈ 〈0, 1〉 .
(5.19)

As will be shown later, the stresses in the simulations discussed in this disserta-

tion, which used µ = 100, seldom exceeded s = 3, or even s = 2 (the exception

was stresses at grid points where the material had grown extremely thin and was

“breaking”; these results were questionable also for geometrical reasons, and were

disregarded). This means that the relative change in area due to elastic deforma-

tions stayed below 1%.

To verify that these results held in the numerical model, a range of small
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simulations were run. The concern was that other approximations such as the

numerical viscosity or the discreteness of the grid might influence the change in

area as well. These small simulations were run on a 5 by 5 grid, where the edges

were straight and the strain rate constant. The physical size of the systems varied

around the size of the simulations described later in this chapter (A0 ∈ [1, 16]). The

parameters were varied in the following ranges: µ ∈ [10, 1000], ε0 ∈ [0.3, 0.003],

Λ0 ∈ [0.01, 1], and Dtot ∈ [10−2, 10−5].

In all the stable simulations, the elastic strain accounted for nearly all the

change in density, as described above. More specifically, the actual change in area

was always slightly lower than that estimated due to elastic deformations, the

difference never exceeding 0.5% of the total change in area. For small values of ε0,

the higher strain rates were the most inaccurate in this respect. For higher values

of ε0, when the stresses would be less responsible for storing the energy, a change

in strain rate would have little, if any, effect on the change in area. In general,

lowering µ or Λ0 would also cause a greater difference between the expected change

in area due to the stress, and the actual.

For example, with µ = 100, Λ0 = 1, ε0 = 0.1, and Dtot = 0.001, the stress

leveled off at s∞ = 1.005, which should have given a relative change in area of

0.336%. The measured relative change in area was actually 0.333%. In other words,

the change of density in the simulations closely followed the theoretical predictions

above, and when there were any discrepancies, the area in the simulated model

would remain somewhat closer to the initial value. Thus it should be safe to use

Eq. (5.18) as an upper bound estimate of the change in density, ∆A/A0. Since

only results with s < 3 were used, setting the shear modulus to µ = 100 was a

reasonable choice.



CHAPTER 6

NECKING

Irregular geometry in a two-dimensional sample of material can cause stress lo-

calization and shear banding. As compared to the zero-dimensional model, the

introduction of two spatial dimensions also adds elastic deformation and inertia.

As long as the elastic strains are small, the speed of sound high, and the rate of

total deformation low, the difference between a zero-dimensional and a uniform

two-dimensional system is minimal. In a spatially extended system, geometry can

play a role in determining the behavior of the material through phenomena such

as stress localization and shear banding.

Generally speaking, metallic glasses have two modes of deformation: homoge-

neous and inhomogeneous (see Section 4.2 and also [77]). The simulations described

in this and the next chapter illustrate how a system transitions from the former

to the latter. Some earlier work can be found in [71].

6.1 Simulations

One way of exploring the effect of a non-trivial geometry is to look at the dynamics

of a material while it is necking. A series of simulations were run where a rectangu-

lar 2×8 piece of material was elongated in the y-direction at a constant strain rate.

The material was slightly indented in the middle, where the width was reduced by

1%. Specifically, the right-hand boundary was given by X(y, t = 0) = 1 − δ(y),

where δ(y) = 0.01 exp[− ln 2(y/0.1)2]. This perturbation to the geometry was

added to break the symmetry and to help trigger any potential instabilities. The

material (or rather, a quarter of it) was mapped onto an 11 × 41 regular grid,

using the transformation of variables described in Section 5.2. The size of the grid

77
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was verified to be large enough to support the desired accuracy, as a comparison

with some test runs on a larger 21 × 81 grid gave almost identical results. The

shear modulus was set to µ = 100, while the numerical viscosity was chosen to be

η = 0.02, based on the discussions in Sections 5.5 and 5.7, respectively.

Fig. 6.1 shows the outlines of material samples in two separate simulations.

The solid outlines were the initial configurations; notice that the indentations are

hardly visible. The dashed outlines represent the configurations after the systems

had been strained. The simulation on the left was strained an order of magnitude

faster than the one on the right. While the former had a smooth neck, the latter

had a more irregular boundary due to shear bands.

In general, shear bands would appear more readily when the material was

strained at a lower rate. The left part of Fig. 6.2 shows the plastic dissipation Q as

given by Eq. (4.60) in a simulation with Dtot = 10−4, ε0 = 0.03, and Λ0 = 1 after

it had strained roughly 6%. The right-hand side displays, for the same simulation,

the velocity field with the uniform part vuniform = (0, yDtot) subtracted away.

These figures show that the material no longer was deforming uniformly. Stress

concentrations radiating out from each notch at roughly 45◦ increased the plastic

dissipation, and thus the plastic deformation, along these shear bands. As can be

seen in the velocity plot, the whole central piece of the neck became narrower, and

this is what caused the irregular boundaries seen on the right-hand side of Fig. 6.1.

Chapter 3 explained how the rate of deformation Dpl increases drastically when

the deviatoric stress |s| becomes larger than unity. In steady state, any area with

|s| > 1 can be considered to be flowing plastically, while regions with |s| < 1 are

jammed. This applies to the tensorial version of the theory, too, when measuring

the deviatoric stress by the invariant s̄ =
√
s2 + τ 2, also known as the maximum
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Figure 6.1: Examples of the geometry in two numerical experiments. The
solid outlines are the initial configurations — the initial inden-
tations are hardly visible. The dashed outlines represent the
geometry after the left and right samples were strained 24% and
10%, respectively. The strain rate in the left simulation was
Dtot = 10−3, ten times higher than on the right. In both simula-
tions µ = 100, ν2 = 0.5, ε0 = 0.03, Λ0 = 1, and the initial size of
the samples were 2 × 8.

shear stress. Fig. 6.3 shows a series of snapshots from a necking simulation where

the interior has been shaded according to the values of s̄; the darker the shade,

the higher the value. At low strains the stress was uniform, but as the material



80

Figure 6.2: The plots in this figure are taken from the same simulation as
the outline on the right-hand side of Fig. 6.1, but this time at
roughly 6% strain. The density plot on the left shows the plastic
dissipation Q as given by Eq. (4.60). The figure on the right dis-
plays the velocity field after the uniform part vuniform = (0, yDtot)
had been subtracted away. The parameters for this simulation
were Dtot = 10−4, ε0 = 0.03, and Λ0 = 1.
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Figure 6.3: The graph shows the true stress σyy at the grips as a function
of the total strain εtot

yy . Snapshots of the system were taken at
six different strains, and the interior was shaded according to the
value of the maximum shear stress s̄ =

√
s2 + τ 2. The black lines

in the four last snapshots show where s̄ = 1, suggesting that the
area between the lines (s̄ > 1) is flowing plastically while the
areas at the ends (s̄ < 1) are jammed. The parameter values
were Dtot = 10−3, ε0 = 0.03, and Λ0 = 1.
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necked the stress concentrated in the center. The black lines that appear in the

last four snapshots mark the boundary between s̄ < 1 and s̄ > 1. The steady-state

solutions suggest that the area between the lines were flowing plastically, while the

regions on either end, outside the lines, were more or less jammed. As the neck

grew more pronounced, the plastically flowing area would shrink, making a smaller

and smaller area responsible for accommodating the ever increasing global strain.

In addition, the jammed areas would relax (notice how the ends grew lighter in

the final snapshots) and contract along the strained y-axis while releasing stored

energy. This decrease in strain at the ends had to be compensated by increasing

the strain even further in the middle.

The graph below the snapshots plots the true stress σyy at the grips as a

function of the total true strain εtot
yy . The true stress (at the grip) is defined as the

force divided by the current width of the material, both measured at the grip. The

true, or logarithmic, total strain is defined as εtot
yy = ln[Ly(t)/Ly(0)], where Ly(t) is

the length of the material at time t. The snapshots were marked on the graph as

circles. The first snapshot was taken while the material was in the “elastic phase”,

while the second was taken just as the material was about to yield. This explains

why the two first snapshots seem so uniform. Note that since the plotted stress was

measured at the grips, it corresponds to the shading at the ends of the material.

To illustrate how the parameters affect the material behavior, Figs. 6.4, 6.5,

and 6.6 show further plots where the true stress σyy at the grip was plotted against

the true total strain εtot
yy , comparing curves for various values of ε0 and Dtot. In

Fig. 6.4 all the simulations were strained at a rate of Dtot = 10−3 while ε0, the

amount of strain caused by flipping STZs, was varied. In simulations with a higher

ε0, the material needed to be strained further before reaching the yield stress. This
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Figure 6.4: The true stress σyy at the grip plotted against the true total
strain εtot

yy for selected values of ε0. Values of other parameters
were Dtot = 10−3, µ = 100, ν2 = 0.5, and Λ ≡ 1. As ε0 was
increased, it took longer (in terms of the strain) for the material
to reach the yield stress, since less of the deformation was stored
as elastic energy (and more as plastic). Once the yield stress was
reached, a higher value of ε0 allowed for more plastic deformation
and thus a quicker relaxation of the stress.

is because more of the work done on the system was stored as plastic energy; it was

only the elastic deformations that contributed to the rising stress. After reaching

the yield stress, the systems with a higher ε0 would see a faster relaxation of

the stress. This is probably because a high ε0 allowed for a higher plastic rate

of deformation at the neck, where the elastic stored energy was released through

plastic dissipation. Interestingly enough, a high ε0 meant that most of the stored

energy was plastic; that is, the energy was stored in flipped STZs rather than

elastic strain (the amount of stored plastic energy cannot easily be deduced from

the stress-strain curves).



84

0 0.1 0.2 0.3

True strain (εtot

yy
 )

0

0.5

1

1.5

2

2.5

T
ru

e 
st

re
ss

 a
t g

ri
p 

(σ
yy

 ) D
tot

 = 10
-5

D
tot

 = 10
-4

D
tot

 = 10
-3

D
tot

 = 10
-2

0 0.5 1
0

1

2

3

Figure 6.5: The true stress σyy at the grip plotted against the true total
strain εtot

yy for selected values of Dtot. Values of other parameters
were ε0 = 0.03, µ = 100, ν2 = 0.5, and Λ ≡ 1. The value of
Dtot had little effect on the “rate”, in terms of strain, at which
the stress reached yield; that is to say, all the simulations in
this graph yielded approximately at the same strain (the reason
the Dtot = 10−2 curve starts at a higher stress is explained in
Section 4.7). After yield, though, the high strain rate simulations
were strained much further before they relaxed. In the slowest
simulation, the shear bands were so sharp that the numerics had
trouble continuing on past 5% strain. The framed plot shows
how long it took before the stress relaxed in the simulation with
the highest strain rate.

The effect of varying the total strain rate is shown in Fig. 6.5. The strain rate

had little effect on the strain at which the yield stress was reached (although, as

explained in Section 4.7, it did influence the initial stress in these simulations).

After the system reached yield stress, the simulations with high strain rates took

a lot longer (in terms of strain) before they would neck. The higher strain rate

meant a higher steady-state stress s̄∞, which in turn meant that small geometric
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Figure 6.6: The true stress σyy at the grip plotted against the true total
strain εtot

yy . Again, a higher ε0 caused a slower rise to yield but
a faster relaxation after. The strain rate did not affect the rise
to yield, but a faster rate resulted in longer plateaus of “uniform
steady-state plastic deformation” before the indented geometry
caused a necking instability. Parameter values were µ = 100,
ν2 = 0.5, and Λ ≡ 1.

inhomogeneities would not be able to separate the stress into regions of s̄ > 1 and

s̄ < 1. For the low strain rate simulations, the stress localization was more pro-

nounced, and for the lowest rate, the shear bands were so sharp that the numerics

was not able to strain the material beyond 5%.

Fig. 6.6 compares stress-strain curves of simulations where both ε0 and Dtot

were varied. These curves show clearly that the strain rate primarily changed the

time between yield and necking, while ε0 controlled the dynamics of both the stress

increase before yield and the relaxation after.

To gain a better intuition of the necking process, Figs. 6.7 and 6.8 compare
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Figure 6.7: The true strain εtot
xx across the sample both at the end (grip) and

at the middle (neck) as a function of the total strain εtot
yy along

the sample for various values of ε0. When the materials started
necking, the strain at the grips would relax back up to zero, while
the strain at the center would descend to large negative values
as the neck became thinner. Values of other parameters were
Dtot = 10−3, µ = 100, ν2 = 0.5, and Λ ≡ 1.

the strain εtot
xx both at the neck and at the end (where the grip was) as a function

of the strain εtot
yy . The curves were taken from the same simulations shown in

Figs. 6.4 and 6.5. The upper and lower curves were the strain at the grip and the

neck, respectively. The straight line εtot
xx = −εtot

yy represents the trajectory followed

by a uniform material (with no necking) if there were no elastic deformations. In

the simulations, the material did neck, and plastic and elastic stored energy was

released from the areas near the grips. Consequently, the strain would decrease

there, making the ends wider while jamming the plastic flow. These effects were

particularly sharp when the value of ε0 was increased.
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Figure 6.8: The true strain εtot
xx both at the end (grip) and at the middle

(neck) as a function of the total strain εtot
yy for various strain

rates, otherwise similar to Fig. 6.7. Note that the curves from
the two simulations with the slowest strain rates, Dtot = 10−4

and Dtot = 10−5, are hard to distinguish (they are in the upper
left-hand corner). The values of the parameters were ε0 = 0.03,
µ = 100, ν2 = 0.5, and Λ ≡ 1.

If ε0 had been chosen so that ε0 � 1/µ(1 + ν2), the first part of the curves

in Figs. 6.7 and 6.8 (the upper left-hand corner) would follow εxx = −ν2εyy (this

is not shown in the graphs). The material would revert back to εxx = −εyy after

reaching yield and steady-state plastic flow, since at that point there would only

be plastic deformation.

6.2 Discussion

In the previous section, a series of necking simulations with different values of

the parameters ε0 and Dtot was described. Trends seen in these simulations are



88

discussed in more depth in the text below.

Fig. 6.9 is a “phase diagram” of the dynamics of the necking simulations, map-

ping out the behavior as a function of Dtot, the total strain rate, and ε0, the strain

due to flipped STZs (Spaepen uses a similar diagram, which he calls a “defor-

mation map”, when he outlines the behavior of amorphous metals in a graph of

the temperature versus the stress [20, 21]). It tries to capture the essence of the

behavior described in the simulations above, and also includes some information

that was derived in earlier chapters. The shaded area shows where the initial

stress starts above the yield stress, as described in Section 4.7. It might still be

possible to do simulations at these parameter values, but the strain rate would

have to be ramped up gradually from a lower value. Unfortunately, the details of

the ramping-up procedure would affect the outcome. On one hand, if the strain

rate was ramped up too slowly, the material would yield before the strain rate

had reached its final value. On the other hand, if it was ramped up too fast, the

speed of sound would no longer be negligible and inhomogeneities would form at

the grips due to large stress buildups. This is not a numerical effect; it would be

true for real experiments as well.

In the area above the solid line, the stress at steady state would be such that the

elastic deformations would cause a change in density greater than 1%. Parameter

values for the simulations were not chosen from this area since the model assumed

that the density would remain constant (see Section 5.7). This was a numerical

approximation in the model, and future models might refrain from this assumption

in order to investigate behavior in this parameter space.

The three curves running down the center of the graph represent various val-

ues (at steady state) of the fraction of stored plastic to elastic energy ψpl/ψel.
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Figure 6.9: A “phase diagram” for the dynamics of constant strain rate neck-
ing simulations in the (Dtot, ε0) parameter space when Λ ≡ 1,
µ = 100, and ν2 = 0.5. Simulations with a lower total strain rate
had more pronounced shear bands. An increased ε0 resulted in
more plastic flow, which allowed for sharper necks (in both time
and space). The three curves running down through the center
indicate various values (at steady state) of the ratio of stored
plastic to stored elastic energy. If parameters were chosen from
the shaded area at the top, the initial stress (as explained in Sec-
tion 4.7) would be higher than the yield stress; thus, the strain
rate would have to be ramped up from a lower value (perhaps
from rest), and the details of how the strain rate was ramped
up would affect the outcome of the simulation. The simulations
in this dissertation deliberately avoided parameters from this re-
gion. Finally, the solid line shows where, at steady state, the
change in density due to elastic deformation would reach 1%. To
keep the change in density to a minimum, parameter values for
the simulations were chosen from below this line.
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Specifically, assuming a uniform system (as described in Section 4.4) at steady

state (which means that τ = ∆τ = 0, p = −s, Λ = 1, and ∆s = 1/s), combining

Eqs. (4.58) and (4.59) gives

ψpl

ψel
= ε0µ(1 + ν2)

1 + s2

s4
. (6.1)

The curves can be represented parametrically as

{ε0, Dtot} =
1

µ(1 + ν2)

(

1 + t

1 − t

)3/2{√
1 − t2

2
, t

}

with t ∈ 〈0, 1〉. (6.2)

Fig. 6.10 shows how the simulations discussed in the previous section fit into

the “phase diagram” of Fig. 6.9. Since there was more room in this graph, an

additional curve and shading was added to show what parameter values would

cause the initial stress to lie between s0 = 0.1 and s0 = 1, the latter being the

yield stress. More details about the initial stress can be found in Section 4.7.

Returning to Fig. 6.9, how can the trends summarized there be explained?

First, the simulations with higher strain rates had less pronounced shear bands.

Since energy was supplied at a faster rate, the material also had to dissipate this

energy if it were to stay in steady state. In the slow strain rate simulations, the rate

was slow enough that all the dissipated energy could exit through the shear bands;

in other words, only the shear bands had stresses above the yield stress. In the

simulations with higher strain rates, the system needed to rid itself of more energy

per unit time, and thus had to dissipate energy throughout the material. This

forced the stress to exceed the yield stress everywhere. Remember that if s̄ > 1

then ∆̄ → 1/s̄, while if s̄ < 1 then ∆̄ → s̄. Since the plastic flow was proportional

to ε0(s−∆) (Λ0 = 1 in these simulations), the slowly strained materials saw a large

difference between the amount of plastic flow in the shear bands and the rest of

the material. The stresses would be above the yield stress in the shear bands and
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Figure 6.10: This is the same “phase diagram” as in Fig. 6.9, with simulations
marked as open and filled circles. The latter are the simulations
that were presented in Section 6.1. Parameter values were µ =
100, ν2 = 0.5, and Λ ≡ 1. The shaded area added since Fig. 6.9
represents the parameter space where the initial stress would lie
between s0 = 0.1 and s0 = 1.

below it elsewhere. Notice how the inhomogeneous geometry played a vital role

by breaking the symmetry, concentrating the stresses in certain areas, and thus

allowing the shear bands to form. In contrast, the value of the strain rate had little

effect on the simulations before the stress reached the yield stress. As long as ∆̄

was low, Γ was negligible, and few STZs were created or annihilated. This implies

that the deformation before yield was almost reversible, and that the plastic strain

was proportional to ∆̄, the fraction of flipped STZs. Thus the material would

always reach the yield stress at the same total (that is, elastic and plastic) strain.
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Second, when the parameter ε0 was given high values, the material would have

to be strained further before reaching yield stress. This parameter controlled the

amount of strain due to flipping STZs, or alternatively, how much of the energy was

absorbed in plastic (reversible and irreversible) deformations. When ε0 µ(1 + ν2),

which is approximately proportional to ψpl/ψel, was less than unity, most of the

strain energy was stored as elastic strain. This would correspond to ε0 < 0.007

in the above simulations, since µ = 100 and ν2 = 0.5. As ε0 was increased, the

STZs were responsible for more of the deformation, and since the stress is only

proportional to the elastic strain, the stress would grow more slowly for large ε0.

That explains why the materials with the smaller ε0 yielded earlier.

Observing the post-yield dynamics, a large value of ε0 ultimately resulted in

sharper necks. Once the stress had reached yield, the energy supplied by the

work at the grips was no longer being stored in the elastic or plastic deformations

(which corresponds to stress and flipped STZs, respectively). Rather, the energy

was dissipated through flipping newly created STZs while annihilating the same

amount of already-flipped ones. In a homogeneous system the material would

just remain in this steady state. In the necking simulations, though, the localized

stresses emanating from the indentations perturbed the system enough to change

the flow from homogeneous to inhomogeneous. Especially for higher values of ε0,

the neck would narrow rapidly, increasing the stress and plastic flow there until the

material would snap in two (in practice, the restricted geometry of the grid would

not actually allow the material to split, but the neck would become extremely

narrow and the time-step would decrease to a value which was, for all practical

purposes, zero). This uncontrolled necking was mainly driven by stored energy

being released through plastic dissipation at the neck. Interestingly enough, it was
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the stored plastic energy that supplied almost all of the energy; the stored elastic

energy was almost negligible when ε0 � 1/µ(1 + ν2). An interesting question is:

Would the dynamics change if one refrained from making the approximation (4.27),

one of the quasi-linear assumptions? In some versions of the theory, 1/τ θ0 would

grow small for low stresses, thus preventing the STZs from flipping back [30].

Potentially, this could prevent some of the release of the stored plastic energy from

the areas further from the neck.

A large value of ε0 meant that the material needed to be strained further before

the stress reached the yield stress since the plastic flow relaxed some of the stresses.

Although it took longer for the material to reach the yield stress, once it did the

neck developed more rapidly. This was because the increased plastic flow in the

neck allowed the ends to relax and release its stored plastic and elastic energy

faster. The relaxation of the stress at the ends added even more strain to the

center, contributing to the plastic flow at the neck. Finally, as the neck became

thinner, the stress would rise there and increase the already high plastic flow even

further. Thus the material would neck faster when ε0 was high, since that would

reinforce this feedback loop.

When ε0 � 1/µ(1+ν2), most of the initial work done on the system was stored

as elastic energy. After reaching yield stress, the steady-state stress became large

(and ∆̄ = 1/s̄ small) in order to create enough plastic dissipation D̄pl to counter

the steady input of energy supplied by the work done at the ends of the material.

There were some faint shear bands where the stresses showed slightly elevated

values, but the plastic dissipation was almost uniform throughout the material

when ε0 was small.



CHAPTER 7

PRE-ANNEALED MATERIALS

The behavior of a pre-annealed metallic glass is more brittle than both a virgin

as-quenched sample and a material that has experienced plastic work. The ex-

periments discussed in Section 3.2 also reported that the pre-annealed solids had

a higher density; structural relaxation had packed the molecules more closely to-

gether. The STZ theory describes the change in behavior due to annealing through

Λ, the relative density of STZs. With less room for the atoms to move, a pre-

annealed material would start with an initial value of Λ less than one, Λ0 < 1. In

a virgin material that has just been quenched from a molten state, the atoms find

themselves in more “fluffy” structure, which would correspond to a higher value

of Λ. Likewise, if an annealed material is subjected to plastic work, the value of Λ

would rise as the tightly packed atoms are “re-fluffed”. Consequently, a material

with Λ0 < 1 and Λ0 = 1 will from now on be referred to as “pre-annealed” and

“worked”, respectively, although the latter could also represent a material in its

virgin as-quenched state.

Chapter 3 described the effects of using a lower initial value of Λ in the non-

tensorial version of the theory. Initially during a constant strain-rate experiment,

a small Λ would suppress plastic deformation since there would be very few STZs

to flip. As the stress |s| → 1, most of the existing STZs would be flipped, and

new ones would have to be created causing Λ to grow. The lower ε0 was set, the

higher the peak stress and steady-state stress would be, and the faster Λ would

grow toward one.

The previous chapter assumed that Λ ≡ 1 throughout. The current chapter

describes simulations where pre-annealed materials were used during loading, im-
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plemented by setting Λ0 = 0.01. A spatially extended two-dimensional simulation

allowed Λ to grow locally, thus making it possible for the material to boost the

plastic flow even further in areas where the stresses were high. As will be seen,

this contribution to the inhomogeneous deformation was particularly pronounced

for high values of ε0.

As in Chapter 6, the simulations had a shear modulus of µ = 100, a Poisson

ratio of ν2 = 0.5, and a numerical viscosity of η = 0.02. The size of the material

was 4 × 4, although this time the whole material was simulated (that is, there

were no symmetric boundaries). The material was mapped onto a grid measuring

33×33 nodes. The left and right boundaries X0(y, t) and X1(y, t) (initially parallel

to the y-axis) were both allowed to deform. The lower boundary was held fixed at

y = 0, while the upper boundary Y (t) was moved at a constant strain rate. See

Chapter 5 for more details. The initial density of STZs was set below unity, to

Λ0 = 0.01. In order to encourage inhomogeneous flow, the free boundaries were

made jagged by randomly perturbing the width with values up to 1% of the total

width (in other words, after the perturbation X1(y, 0) − X0(y, 0) ∈ [3.96, 4.04]).

By setting the seed for the random number generator to the same value for all the

simulations, the initial geometry would always be the same.

On a side note, some attempts were made to look at the behavior of the pre-

annealed materials during compression. The advantage of applying a negative

strain rate was that the material was not able to neck or break in two. Most of the

simulations were well behaved, but unfortunately the increased local stresses would

in some cases (especially for high values of ε0) be extreme enough to cause, among

other effects, spurious energy creation (when comparing the rate of work done at

the grips to the actual total rate of energy absorbed and dissipated by the system,
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the latter would sometimes be 5% or 10% higher than the former). The results

from these simulations were therefore not included. After looking into the problem,

it is believed that it was mainly numerical in nature, although triggered by harsher

physical conditions; for example, there are reports of seeing serrated flow during

compression experiments with amorphous metals [22, 78, 79, 80, 81, 82, 83, 84]

(keep in mind, though, that the mechanisms that cause serrated flow might not be

present in the current version of the STZ model).

The simulations in this chapter illustrate the dynamics of pre-annealed materi-

als in three different ways. First, the distribution and average density of STZs are

compared to the dissipated energy and the work done on the systems for different

values of ε0. Second, the dynamics of pre-annealed and worked materials are com-

pared. And third, the following question is addressed: Would the simulations with

higher strain rates experience more pronounced shear bands if they were stopped

and held at a fixed strain for the same amount of time it would take a slower

simulation to reach that same strain?

7.1 Variation in ε0

Fig. 7.1 compares the average density of STZs

Λavg ≡
1

A

∫

A

Λ dA (7.1)

(where A is the area of the sample) to the plastic dissipation of energy

Qsum ≡
∫

A

QdA (7.2)

for three different values of ε0. All three simulations were strained at a rate of

Dtot = 10−4. Each of the three graphs on the left displays three curves, of which
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the solid represents the rate of work done on the system at the grip,

Pexternal = F vy = (X1 −X0)σyyvy . (7.3)

F is the force applied to the end of the material, and σyy, vy, X
0, and X1 were all

evaluated at y = Y (t). Since the upper boundary was kept flat and moved per-

pendicular to its surface, only the y-component of the stress was needed. Pexternal

is thus the rate at which energy flowed into the system.

The middle curve in all three graphs shows Q, the rate of energy dissipated

due to plastic deformation summed over the whole material. The axis on the left

side displays the values for both this curve and that of Pexternal, although they were

multiplied by 103 to reduce clutter (the interval is really [0, 0.004]). The axis on

the right sets the scale for the third curve, Λ, which represents the density of STZs

averaged over the whole sample.

The two density plots to the right of each of the graphs show the final dis-

tributions of Λ and Q when the systems had reached 7% strain. In the density

plots for Λ, the shading was scaled so that the interval [0, 1] went from white to

black. With Q, the gray scale was mapped onto the interval [0, 0.003], with white

again representing zero. In the latter density plots there were occasional points

that exceeded 0.003 (these were just painted black as well), but choosing a larger

interval would have erased most of the structure seen in the pictures.

In the simulation where ε0 = 0.003, Λavg quickly rose to one while Qsum grew

equal to Pexternal once the stress reached yield. The latter meant that all the energy

provided at the grips was dissipated through plastic deformation, and none was

stored, after the material reached about 2% strain. In the ε0 = 0.3 simulations,

Λavg never even reached a value of 0.15, and the plastic rate of dissipation grew

a lot slower. In fact, looking at the density plot shows that the density of STZs
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Figure 7.1: Three pre-annealed simulations with Λ0 = 0.01 were run for ε0 =
0.003, ε0 = 0.03, and ε0 = 0.3, all with a strain rate of Dtot =
10−4. The graphs on the left show Pexternal, the rate of work done
at the grips, Qsum, the rate of dissipated plastic energy summed
over the whole material, and Λavg, the average density of STZs.
The left vertical axis shows the range for Pexternal and Qsum (the
interval is [0, 0.004]), while the right vertical axis displays the
scale for Λavg. The density plots on the right show Λ and Q at
7% strain.
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Figure 7.1 (Continued)
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only saturated along one band, and the plot for Q shows that this was where most

of the plastic dissipation took place as well. The fact that Λ so quickly reached

its equilibrium value everywhere in the material for small ε0 meant that the initial

value of Λ0 = 0.01 had little effect in this case.

Although the density plots of Q and Λ both were snapshots, the latter in some

ways gave a cumulative look at what had happened since the start, since Λ could

not decay (this is not true in other versions of the STZ theory that, being developed

at the time of this writing, incorporate thermal relaxation [66]). In contrast, the

density plot of Q is more appropriate when examining the instantaneous dynamics,

since it highlights the current rate of plastic deformation in the different areas of

the material.

In the simulation with ε0 = 0.3, the rate at which energy flowed into the system,

Pexternal, started decaying towards the end. This is because the stress at the grip

began to drop due to the increased plastic flow along the shear band. The high

value of ε0 allowed the material to deform enough in the small area of this band to

account for all the strain imposed by the grip, thus inducing inhomogeneous flow

and perhaps cause the material to break at a later time.

7.2 Comparing Pre-Annealed and Worked Materials

Fig. 7.2 compares a pre-annealed and a worked material, having initial conditions

of Λ0 = 0.01 and Λ0 = 1, respectively. The two curves in the center show the true

stress-strain curves of these two materials as they were strained beyond yield and

toward failure (the materials would eventually grow extremely thin somewhere in

the center). The density plots of Q on either side were arbitrarily chosen some

time after the materials had yielded, with the stress at the grips being the same
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Figure 7.2: The true stress-strain curves for two materials, one with Λ0 =
0.01 and one with Λ0 = 1. The other parameters were Dtot =
10−3 and ε0 = 0.3. The density plots show the plastic rate of
dissipation at some arbitrary time after yield, with the stress at
the grips being the same in the left and right snapshots.

in the two snapshots. Although the two density plots look different, their initial

geometries were identical to each other and to all the other simulations in this

chapter.

The only comparison shown here is that of the simulations with ε0 = 0.3.

Although no less important, the pre-annealed materials with a lower ε0 would

have Λ rise to one everywhere so quickly that the results were essentially the same

as for the worked materials; this effect was seen in Fig. 7.1.

A high value of ε0 allowed the stresses to grow more slowly, permitting some

areas to reach s̄ > 1 while others remained at s̄ < 1 as the material approached

yield. Λ would only grow in the resulting shear bands, thus making its average

value grow slowly. A slow growing stress (with respect to time) would also occur

for small strain rates, resulting in a similar shear-banding effect.



102

Comparing the stress-strain curves in Fig. 7.2, the pre-annealed material plat-

eaued before breaking. It almost seemed like it was riding along an unstable equi-

librium before it increased the density of STZs in one location and then deformed

and broke there. In comparison, the worked material would deform substantially

more before reaching yield stress, and then “ooze” apart (rather than “break”).

It is tempting, although perhaps somewhat speculative, to compare the necking

on the left side of Fig. 7.2 to fracture. Some of the simulations, including this

one, had extremely concentrated stresses and narrow necks, and the deformations

behaved in many ways similar to brittle cracks. The simulations have shown that

there is an interplay between the STZs, the geometry, and stress concentrations.

Naturally, the geometry in these simulations was quite restricted, the single-valued

boundaries forcing the “crack” to run horizontally rather than following the 45◦

shear bands as seen in experiments [23, 24]. Also, the resolution was too low to

make any good quantitative arguments. Nevertheless, this behavior suggests that

the STZ description might be capturing some of the dynamics that is present in

fracture1.

7.3 Strain-Rate Dependent Localization

When comparing the results of the simulations from both the current and previous

chapters, the shear bands at a given strain were more pronounced for smaller

strain rates. Comparing two identical materials that were strained to 7% at rates

of Dtot = 10−4 and Dtot = 10−3, the former would not only be stretched ten times

slower, it would also have ten times as long to relax and deform. Could it be that

1For more information on fracture in brittle amorphous materials, see the review
by Fineberg and Marder [85].
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it was not the difference in speed, but the difference in relaxation time that allowed

the shear bands to form in the slow case?

Fig. 7.3 shows density plots of Λ at 7% strain where the materials had been

strained at the rates mentioned above, with both ε0 = 0.03 and ε0 = 0.3. The

system that had been strained at the slower rate, Dtot = 10−4, reached 7% at time

t = 700, while the faster system with a rate of Dtot = 10−3 was stopped around

t = 70 (the snapshot was taken at t = 75 to make sure the material had come to

a complete stop, reaching its full 7%; in order to stop the material at this exact

strain, it was necessary to start slowing it down already at t = 65). After stopping

the fast system, it was held fixed until t = 700, the same amount of time it took

the slow system to reach 7% strain.

It turned out that there was practically no change in the quickly-strained ma-

terial after the grips had come to a halt (this was the case both for ε0 = 0.03

and ε0 = 0.3, although the former ended up with a higher Λavg). This means that

all the deformation took place instantly, not allowing any of the stored energy to

escape later.

This does not preclude a situation where a more irregular geometry might

induce a stress concentration, allowing both stored plastic and elastic energy to be

released, perhaps even driving a necking instability; this kind of behavior was seen

in the previous chapter. It does mean, though, that the shear bands were created

without the need of instability mechanisms. In fact, the bands of STZs were more

pronounced when energy flowed into the system at a slower rate.

The previous section speculated that the STZ theory could perhaps contribute

to explain fracture dynamics. The current section seems to contradict this some-

what, at least at first glance. From experience, a material strained at a higher rate
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Figure 7.3: Density plots of Λ at 7% strain, both for ε0 = 0.03 and ε0 = 0.3.
The systems were strained at rates of Dtot = 10−4 and Dtot =
10−3, and in the latter case the grip was held fixed at 7% for
the same amount of time that it took the slower strain rate to
reach this strain. Despite the extra time, no pronounced shear
bands developed; in fact, once the grip was stopped, the material
hardly changed at all.

seems more brittle, implying that it should have sharper stress concentrations,

and more localized shear bands. How could such behavior be compatible with the

results shown above?

It was briefly mentioned earlier that, as of this writing, the thermal relaxation

is being incorporated into the STZ theory [66]. With that mechanism included,

Λ can decrease as STZs are annihilated over time, and this might suppress the

creation of localized bands of STZs as the strain rate drops. The model used in

this dissertation did not allow Λ to decrease, which might be interpreted as running

the simulations close to zero temperature.



CHAPTER 8

CONCLUSION

In addition to showing that a two-dimensional implementation of the STZ theory

is capable of describing shear localization, the goal of this dissertation has been

to give the whole theory a broad yet detailed presentation. Examples taken from

both the zero- and two-dimensional theory, and from a wide range of parameter

values, were used to expose the different types of behavior inherent in the model.

The geometry, energy flow, and internal state of the material all contributed to

the rheology through effects such as jamming and plastic flow, annealing, strain

softening, necking, and shear banding.

The STZ model is an example of a physically motivated rate-and-state theory

that incorporates both static and time-dependent plastic theory in one compact

description. It assumes that plastic flow in an amorphous solid is caused by the

non-affine transformation of particles in localized areas, or shear-transformation-

zones (STZs). This description, which includes the internal state variables Λ (the

relative density of STZs) and ∆ (the orientation of the transformed STZs), is then

combined with linear elastic theory.

Chapter 3 explored the behavior of a uniform glassy material by using the zero-

dimensional, non-tensorial version of the theory developed by Falk and Langer[29,

30]. In steady state, the STZ variables Λ and ∆ would allow the material to either

jam or flow plastically depending on the value of the deviatoric stress. An initially

low value of Λ would mimic the effects of a pre-annealed material, including strain

softening when subjected to a constant strain rate. Later these insights were used

to explain the behavior, such as shear localization, seen in the two-dimensional

inhomogeneous simulations of Chapters 6 and 7.
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A tensorial, two-dimensional version of the theory was developed in Chapter 4.

The rate of transformation for the STZs was based on the magnitude and direction

of the local deviatoric stress, while their rate of creation and annihilation was set

proportional to that of the plastic dissipation. A simplified, quasi-linear version of

the model was derived, where basically the plastic rate-of-deformation tensor was

approximated to be proportional to the difference between the deviatoric stress

and the average alignment of the transformed STZs. It was the behavior of this

simplified model that was explored throughout most of this dissertation.

Chapters 6 and 7 presented and discussed results obtained from a numerical

implementation of the two-dimensional, tensorial version of the STZ theory. The

first chapter looked at how the strain rate, the straining-capability of STZs (ε0),

and the geometry affected flow and deformation during necking. It was especially

striking how sharp shear bands and narrow necks were formed at low strain rates

and high ε0, respectively. The former of these two trends appeared to contradict

experimental evidence: An amorphous metal displays increased brittle behavior as

it is strained at a higher rate [77], while the opposite seemed true for the simulated

materials. The discrepancy stems from the lack of temperature in the current STZ

model. There was no mechanism once the simulation had started, apart from

plastic deformation, to annihilate existing STZs. In the experiments, the non-

zero temperature allowed the molecules in the most strained areas to relax if given

enough time. This resulted in more homogeneous flow as the material was strained

at lower rates. Efforts are currently underway to incorporate thermal relaxation

into the model [66].

The second of the two chapters considered pre-annealed amorphous solids,

starting with a lower initial relative density of STZs Λ0. Experiments have shown
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that amorphous metals become more brittle when annealed, even though no crys-

tallization is detected [60, 61, 62, 63, 64, 65]. Rather, the embrittlement correlates

with structural relaxation, leaving the more closely packed molecules less room to

move. In the simulations, the lower Λ0 enhanced the localization of the strain,

especially for higher values of ε0 when most of the stored energy was in the form of

flipped STZs (rather than elastic strain). Compared to either virgin as-quenched

or worked samples, the pre-annealed materials behaved in a more brittle manner

with narrower shear bands and something resembling a cleavage fracture. The

latter observation should be approached with great caution since the numerical

implementation was not designed to handle such extreme deformations. Never-

theless, the similarities between the dynamics of the STZ theory at low Λ0 and

empirically annealed solids were strong enough to warrant further investigation.

As mentioned, an increased value of ε0 would result in more of the applied work

being stored as anelastic rather than elastic strain. This was particularly apparent

for the virgin materials (Λ0 = 1), where an increased ε0 meant that the material

would reach yield stress at a much larger total strain. On the one hand, it is possible

that the large values of ε0, which were needed to produce interesting dynamics

in the simulations, exaggerated the anelastic strain. On the other hand, Λ0 � 1

would restrict the plastic strain (and thus the stored plastic energy) to narrow shear

bands, causing a mostly elastic behavior before yield and more brittle dynamics at

failure. It is possible that the sharp bands of inhomogeneous flow in experimentally

deforming amorphous solids are due to an internal structure corresponding to low

initial values of Λ; unless the materials were quenched extremely rapidly and to

very low temperatures, chances are that some structural relaxation would occur.

Incorporating the earlier mentioned thermal relaxation into the STZ model could
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help lower the value of Λ throughout the simulation and yield better agreement

with the experimental results.

The STZ theory was created by averaging out the microscopic details of simple

amorphous solids. Notwithstanding the geometric restrictions and the quasi-linear

approximation, the results presented in this dissertation still show that the theory

captures many important rheological features seen experimentally including plastic

flow, jamming, necking, annealing, strain softening, shear banding, and soon also

thermal relaxation. Since the assumptions on which the STZ theory is based

are few and relatively general in nature — the STZs are two-state systems that

transform according to the local deviatoric stress — it might also have relevance to

other more complex systems such as glassy polymers. It is with great excitement

and anticipation that I see the agreement between theory and experiment improve

as the STZ description keeps growing more mature.



APPENDIX A

LINEAR STABILITY ANALYSIS OF NUMERICAL ALGORITHMS

Section 5.5 discussed the numerical stability of the implementation of the STZ

model, and stated that the integration algorithm would only be stable if the time-

step was set low enough. Section 19.1 of Numerical Recipes [76] shows how the

von Neumann stability analysis can be used to determine under what conditions an

algorithm is stable. This chapter explains how to easily and systematically apply

this idea to large systems of numerical equations.

A.1 The Stability Criteria

Assume that there are N fields (uα)
n
j , with α ∈ [1, N ], where n and j are the

discrete temporal and spatial coordinates, respectively (thus t = n∆t and x =

j∆x). This means that N difference equations are needed to describe how the

fields propagate in discrete time:

Fα = 0 . (A.1)

In general, Fα can be a function of all the fields uα at all time-steps n and all

locations j. More often, though, Fα is just a function of the uα at times n and

n + 1, and at locations j − 1, j and j + 1 (sometimes also at j − 2 and j + 2). If

this is confusing, take a look at the examples.

Assuming that a constant stationary solution u∗α is known (that is, constant

with respect to n and j), the stability condition is

|ξ| ≤ 1 , (A.2a)

where ξ is the solution of

det(A) = 0 (A.2b)
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and the matrix A is given by

Aαβ =
∑

p,m

∂Fα

∂(uβ)
n+p
j+m

ξpeik∆xm (A.2c)

(See Section A.3 for the derivation). The partial derivatives ∂Fα/∂uβ are evaluated

at uβ = u∗β. For example, if Fα only depends on uα at n and n + 1, and j − 1, j,

and j + 1, Eq. (A.2c) reduces to

Aαβ =
∑

m=0,±1

(

∂Fα
∂(uβ)nj+m

+
∂Fα

∂(uβ)
n+1
j+m

ξ

)

eik∆xm . (A.3)

A.2 Examples

A.2.1 Advection Equation with Explicit Euler

The analytical advection equation is given by

∂u

∂t
= −v∂u

∂x
, (A.4)

where the velocity v is constant. In this case the solution is known: a wave f(x−vt)

(of any shape) moving in the positive x-direction.

Using a numerical scheme that is fully explicit (forward in time), and a sym-

metric derivative on the right-hand side, the difference equation becomes

un+1
j − unj

∆t
= −v

unj+1 − unj−1

2∆x
. (A.5)

This scheme is first order in time and second order in space. Moving everything

to the left-hand side (and multiplying with ∆t for aesthetic reasons),

F = un+1
j − unj +

v∆t

2∆x
(unj+1 − unj−1) = 0 . (A.6)
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Since there is only one difference equation (N = 1), the α subscript is dropped.

The only partial differentials left are

∂F

∂un+1
j

= 1 ,
∂F

∂unj
= −1 ,

∂F

∂unj+1

=
v∆t

2∆x
,

∂F

∂unj−1

= − v∆t

2∆x
.

(A.7)

The matrix A now only has one component, which is

A = ξ − 1 +
v∆t

2∆x

(

eik∆x − e−ik∆x
)

= ξ − 1 +
iv∆t

∆x
sin(k∆x) . (A.8)

Setting det(A) = A = 0, one can solve for ξ. Taking the absolute value gives

|ξ| = 1 +

[

v∆t

∆x
sin(k∆x)

]2

, (A.9)

which is always greater than or equal to one. The advection equation with the

explicit time scheme is thus unconditionally unstable.

A.2.2 Diffusion Equation with Explicit Euler

The diffusion equation is

∂u

∂t
= η

∂2u

∂x2
, (A.10)

where η is the diffusion constant. Using an explicit time scheme and a symmetric

Laplacian,

F = un+1
j − unj −

η∆t

∆x2
(unj+1 − 2unj + unj−1) = 0. (A.11)

This time the partial derivatives read

∂F

∂un+1
j

= 1 ,
∂F

∂unj
=

2η∆t

∆x2
− 1 ,

∂F

∂unj+1

= −η∆t
∆x2

,
∂F

∂unj−1

= −η∆t
∆x2

.

(A.12)
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which gives

A = ξ − 1 − η∆t

∆x2

(

eik∆x + eik∆x − 2
)

= ξ − 1 − 2η∆t

∆x2
(cos(k∆x) − 1)

= ξ − 1 +
4η∆t

∆x2
sin2

(

k∆x

2

)

. (A.13)

Again, set det(A) = A = 0 and solve for ξ. Requiring |ξ| < 1, stability can now be

ensured by requiring 4η∆t/∆x2 < 2, or

∆t <
∆x2

2η
. (A.14)

A.2.3 Diffusion Equation with Second-Order Runga-Kutta

in One Dimension

The algorithm for the Runga-Kutta scheme is described in Eq. (5.6). If the equa-

tion of motion is given by Eq. (5.5), then the discrete diffusion equation has

f [un] = η
unj+1 − 2unj + unj−1

∆x2
, (A.15)

and thus

F =un+1
j − unj

(

1 − 2B + 3B2
)

− (unj−1 + unj+1)B(1 − 2B) − (unj−2 + unj+2)
B2

2
= 0 (A.16)

where B = η∆t/∆x2. This gives

A = ξ − 2

[

2 sin2

(

k∆x

2

)

η∆t

∆x2
− 1

2

]2

− 1

2
. (A.17)

Setting det(A) = A = 0, it is immediately clear that ξ ≥ 1
2

always. Thus the

system will be stable if ξ < 1. This means that

−1

2
< 2 sin2

(

k∆x

2

)

η∆t

∆x2
− 1

2
<

1

2
(A.18)
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or

0 < ∆t <
1

2η

∆x2

sin2
(

k∆x
2

) . (A.19)

It is important that the system is stable for all values of k. This is achieved by

assigning k the value that restricts ∆t the most. In this case, that is k = 2π/(2∆x),

which corresponds to a wavelength of two grid points; this is the shortest possible

wavelength on a grid. Since ∆t is always positive, the restriction on the time-step

for the system to be stable is

∆t <
∆x2

2η
. (A.20)

A.2.4 Diffusion Equation with Second-Order Runga-Kutta

in Two Dimensions

This section will repeat the analysis of the previous section, but the field ui,j will be

two-dimensional where i and j are the x and y indices, respectively (thus x = i∆x

and y = j∆y). The formula for the second-order Runga-Kutta, Eq. (5.6), still

holds, but Eq. (A.15) now becomes

f [un] = η

(

uni+1,j − 2uni,j + uni−1,j

∆x2
+
uni,j+1 − 2uni,j + uni,j−1

∆y2

)

. (A.21)

Following the usual procedure,

ξ = 2

[

2 sin2

(

kx∆x

2

)

η∆t

∆x2
+ 2 sin2

(

ky∆y

2

)

η∆t

∆y2
− 1

2

]2

+
1

2
. (A.22)

Again ξ ≥ 1
2
, and requiring ξ < 1 gives

∆t <
1

2η

1

sin2( kx∆x

2 )
∆x2 +

sin2
“

ky∆y

2

”

∆y2

. (A.23)

This time the toughest restriction on ∆t is achieved by choosing kx = 2π/(2∆x)

and ky = 2π/(2∆y); again, the smallest wavelengths possible on a grid. The
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stability condition thus becomes

∆t <
1

2η

1
1

∆x2 + 1
∆y2

. (A.24)

This is the condition used in Section 5.5.

A.2.5 Wave Equation with Lax

This final example is included to show how the stability analysis can be done when

there are more than one field. The wave equation reads

∂2u

∂t2
= v2∂

2u

∂x2
. (A.25)

To simplify, this is rewritten as

∂u1

∂t
= v

∂u2

∂x
and

∂u2

∂t
= v

∂u1

∂x
, (A.26)

where

u1 ≡ v
∂u

∂x
and u2 ≡

∂u

∂t
. (A.27)

There are now two difference equations,

F1 = (u1)
n+1
j − (u1)

n
j −

v∆t

2∆x
[(u2)

n
j+1 − (u2)

n
j−1] , (A.28a)

F2 = (u2)
n+1
j − (u2)

n
j −

v∆t

2∆x
[(u1)

n
j+1 − (u1)

n
j−1] . (A.28b)

Since N = 2, A is a 2 × 2 matrix:

A =







ξ − 1 − iv∆t
∆x

sin(k∆x)

− iv∆t
∆x

sin(k∆x) ξ − 1






. (A.29)

Setting det(A) = 0, the two eigenvalues are found to be

ξ = 1 ± i
v∆t

∆x
sin(k∆x) . (A.30)

Since |ξ| is always greater than or equal to one (for both roots), this algorithm is

unconditionally unstable.
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A.3 Derivation of the Stability Criteria Formulas

This section derives the general form of the stability condition, Eqs. (A.2). Start

by expanding Fα around the stationary solutions u∗α,

0 = Fα({(uα)nj })

= Fα({u∗α + (δuα)
n
j })

=
∑

β,p,m

∂Fα

∂(uβ)
n+p
j+m

(δuβ)
n+p
j+m + O(δu2) , (A.31)

where the partial derivatives ∂Fα/∂uα are evaluated at uα = u∗α.

It was said earlier that u∗α needs to be constant with respect to both time

and space. This restriction is perhaps harsher than necessary, but usually there

is no need for a more delicate approach. If u∗α changes in time (that is, not a

stationary solution), then it usually become exceedingly hard to find a criterion

on ∆t such that |ξ| ≤ 1. If u∗α has spatial variations, the stability criteria will

vary over the grid, and one would have to calculate this at each grid point. There

is one case where a varying initial field would be relatively simple to do: when

(u∗α)
n
j = exp(ik∗∆xj) exp(−iω∗∆tn). Having u∗α constant is just the special case

k∗ = 0, ω∗ = 0. Note that the spatial frequency of the initial configuration k∗ is

different from the frequency of the perturbation k.

Returning to Eq. (A.31), look only at perturbations at wavelength k by using

(δuα)
n
j = ξneik∆xjhα . (A.32)

The hα are the initial amplitudes of the perturbations. In order for the system to

be stable, it is required that |ξ| < 1, where ξ can be a complex number. It will

turn out that, essentially, the solutions for ξ are the eigenvalues of the system, and

the hα are the corresponding eigenvectors.
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Inserting Eq. (A.32) into (A.31) and dividing by ξn exp(ik∆xj),

∑

β,p,m

∂Fα

∂(uβ)
n+p
j+m

ξpeik∆xmhβ =
∑

β

Aαβhβ = Ah = 0 . (A.33)

(Here the definition (A.2c) was used for A). To find a nontrivial solution (h 6= 0),

it is necessary that det(A) = 0. If α ∈ [1, N ], this should give a polynomial of

order N , and thus N eigenvalues ξ. In order for the scheme to be stable, all the

eigenvalues must satisfy |ξ| ≤ 1.



APPENDIX B

MAPPING THE VARIABLES ONTO A UNIT SQUARE

As explained in Section 5.2, the numerical implementation of the STZ model

mapped the physical coordinates onto a unit square. This chapter presents the

derivation of the temporal and spatial derivatives in the new coordinates, as well

as the transformed equations of motion. The derivation includes the mapping for

both the necking simulations in Chapter 6, which has symmetry conditions along

the x and y axes and only one deforming boundary, and for the simulations of the

pre-annealed materials in Chapter 7, which has no symmetric boundaries and two

deforming edges.

B.1 Prelude

To gain some insight before tackling the real problem, a simpler transformation

will be considered first:

ζx =
x

X(t)
, ζy =

y

Y (t)
, t̃ = t . (B.1)

Using the chain rule, one can write

∂

∂x
=
∂ζx
∂x

∂

∂ζx
+
∂ζy
∂x

∂

∂ζy
+
∂t̃

∂x

∂

∂t̃
, (B.2a)

∂

∂y
=
∂ζx
∂y

∂

∂ζx
+
∂ζy
∂y

∂

∂ζy
+
∂t̃

∂y

∂

∂t̃
, (B.2b)

∂

∂t
=
∂ζx
∂t

∂

∂ζx
+
∂ζy
∂t

∂

∂ζy
+
∂t̃

∂t

∂

∂t̃
, (B.2c)

117
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and the first derivatives thus take the form

∂

∂x
=

1

X(t)

∂

∂ζx
(B.3a)

∂

∂y
=

1

Y (t)

∂

∂ζy
(B.3b)

∂

∂t
= −ζx

Ẋ(t)

X(t)

∂

∂ζx
− ζy

Ẏ (t)

Y (t)

∂

∂ζy
+
∂

∂t̃
. (B.3c)

Consequently, the total time derivative becomes

d

dt
=

∂

∂t
+
∂x

∂t

∂

∂x
+
∂y

∂t

∂

∂y

=
∂

∂t
+ vx

∂

∂x
+ vy

∂

∂y

=
∂

∂t̃
− ζxẊ(t) − vx

X(t)

∂

∂ζx
− ζyẎ (t) − vy

Y (t)

∂

∂ζy
. (B.4)

B.2 One Deforming Edge

The exercise in the previous section will now be repeated, except this time a slightly

more complicated transformation is used:

ζx =
x

X(y, t)
, ζy =

y

Y (t)
, t̃ = t . (B.5)

The only problem is that X needs to be a function of ζy, not y. Thus a small

detour is required. Write the transform as

x = ζxX (ζy, t̃) , y = ζyY(t̃) , t = t̃ . (B.6)

The differentials in the two different coordinate systems are connected by













dx

dy

dt













= A













dζx

dζy

dt̃













(B.7)
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where

A =













X ζx
∂X
∂ζy

ζx
∂X
∂t̃

0 Y ζy
∂Y
∂t̃

0 0 1













. (B.8)

The inverse is

A−1 =













1
X

− ζx
XY

∂X
∂ζy

ζx
X

(

ζy
Y

∂X
∂ζy

∂Y
∂t̃

− ∂X
∂t̃

)

0 1
Y

− ζy
Y

∂Y
∂t̃

0 0 1













. (B.9)

Further, the partial derivatives are linked by













∂
∂x

∂
∂y

∂
∂t













=
(

A−1
)T













∂
∂ζx

∂
∂ζy

∂
∂t̃













. (B.10)

Now, the total time derivative is given by

d

dt
=

(

vx vy 1

)













∂
∂x

∂
∂y

∂
∂t













=

(

vx vy 1

)

(

A−1
)T













∂
∂ζx

∂
∂ζy

∂
∂t̃













=













A−1













vx

vy

1

























T 











∂
∂ζx

∂
∂ζy

∂
∂t̃













. (B.11)
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Writing these equations out in full using Xy ≡ ∂X /∂ζy gives

∂

∂x
=

1

X
∂

∂ζx
, (B.12a)

∂

∂y
=

1

Y

(

∂

∂ζy
−Xy

ζx
X

∂

∂ζx

)

, (B.12b)

∂

∂t
=

∂

∂t̃
+

(

ωxt −Xy
ζx
X ωyt

)

∂

∂ζx
+ ωyt

∂

∂ζy
, (B.12c)

and

d

dt
=

∂

∂t̃
+

(

Ωx − Xy
ζx
X Ωy

)

∂

∂ζx
+ Ωy

∂

∂ζy
, (B.13)

where

ωxt = −ζxX
∂X
∂t̃

, ωyt = −ζyY
dY
dt̃

, (B.14a)

Ωx =
1

X

(

vx − ζx
∂X
∂t̃

)

, Ωy =
1

Y

(

vy − ζy
dY
dt̃

)

. (B.14b)

The second derivatives, using Xyy ≡ ∂2X /∂ζ2
y , are given by

∂2

∂x2
=

1

X 2

∂2

∂ζ2
x

, (B.15a)

∂2

∂y2
=

[

2X 2
y − XXyy

]

ζx

(XY)2

∂

∂ζx
− 2Xyζx

XY2

∂2

∂ζx∂ζy

+

(Xyζx
XY

)2
∂2

∂ζ2
x

+
1

Y2

∂2

∂ζ2
y

, (B.15b)

∂2

∂x∂y
=

1

XY
∂2

∂ζx∂ζy
− Xy

X 2Y

(

∂

∂ζx
+ ζx

∂2

∂ζ2
x

)

. (B.15c)

The Laplacian can be written as

∇
2 =

(

1

X 2
+
ω2
xy

Y 2

)

∂2

∂ζ2
x

+
1

Y 2

(

∂2

∂ζ2
y

− ∂ωxy
∂ζy

∂

∂ζx
− 2ωxy

∂2

∂ζx∂ζy

)

(B.16)

where

ωxy ≡
Xy

X ζx . (B.17)
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Having introduced X and Y means that two more equations of motion are

needed. In the original coordinate system (x, y, t),

dX

dt
= vx(x = X, y, t) , (B.18a)

dY

dt
= vy(x, y = Y, t) = V . (B.18b)

This needs to be written in the other coordinate system, (ζx, ζy, t̃). Using

Eq. (B.13),

dY
dt̃

=
dY

dt
= ṽy(ζx, 1, t̃) = ṽy(1, 1, t̃) = V , (B.19a)

∂X
∂t̃

=
dX

dt
− (Ωx − ωxyΩy)

∂X
∂ζx

− Ωy
∂X
∂ζy

= ṽx(1, ζy, t̃) −
1

Y
[

ṽy(1, ζy, t̃) − ζyV
] ∂X
∂ζy

. (B.19b)

Remember that physically X = X and Y = Y . The notational difference is just

used as a reminder of what coordinate system they are expressed in.

Eqs. (B.12) and (B.13) can now be rewritten as

∂

∂x
=

1

X
∂

∂ζx
, (B.20a)

∂

∂y
=

1

Y

(

∂

∂ζy
−Xy

ζx
X

∂

∂ζx

)

, (B.20b)

∂

∂t
=

∂

∂t̃
−
[

ṽx(1, ζy, t̃) −
Xy

Y ṽy(1, ζy, t̃)

]

ζx
X

∂

∂ζx
− V

ζy
Y

∂

∂ζy
, (B.20c)

and

d

dt
=
∂

∂t̃
+

{

[

ṽx − ζxṽx(1, ζy, t̃)
]

− Xy

Y ζx
[

ṽy − ṽy(1, ζy, t̃)
]

}

1

X
∂

∂ζx

+ (ṽy − ζyV )
1

Y
∂

∂ζy
. (B.21)

For the boundary conditions, one needs the partial derivatives ofX with respect

to the new coordinate system. Since X is only a function of ζy, the derivatives are
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greatly simplified:

∂X

∂x
= 0 ,

∂X

∂y
=

1

Y
∂X
∂ζy

(B.22a)

∂2X

∂x2
= 0 ,

∂2X

∂y2
=

1

Y2

∂2X
∂ζ2

y

,
∂2X

∂x∂y
= 0 . (B.22b)

B.3 Two Deforming Edges

The derivation below is similar to the previous section, except this time both the

left and the right boundaries are allowed to deform. The mapping transforms

the coordinates and all the relevant equations of a system confined within x ∈

[X0(y, t), X1(y, t)] and y ∈ [Y 0(t), Y 1(t)] to a square box ζx ∈ [0, 1] and ζy ∈ [0, 1].

The transform is defined as

ζx ≡
x−X0(y, t)

∆X(y, t)
, ζy ≡

y − Y 0(t)

∆Y (t)
, t̃ ≡ t , (B.23)

where

∆Z ≡ Z1 − Z0 . (B.24)

Again, X needs to be a function of ζy, not y. Write the transform as

x = ζxX 1(ζy, t̃) + (1 − ζx)X 0(ζy, t̃) , (B.25a)

y = ζyY1(t̃) + (1 − ζy)Y0(t̃) , (B.25b)

t = t̃ . (B.25c)

Using the shorthand

W [ζ, Z] ≡ ζZ(ζ=1) + (1 − ζ)Z(ζ=0) , (B.26)

this can be written as

x = W [ζx,X (ζy, t̃)] , y = W [ζy,Y(t̃)] , t = t̃ . (B.27)
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Notice that the only difference between the upright ∆X, X0, and X1, and the

slanted ∆X , X 0, and X 1, is that the former are always functions of y and t, while

the latter are functions of ζy and t̃. Similarly, ∆Y , Y 0, and Y 1 are functions of t,

while ∆Y , Y0, and Y1 are functions of t̃.

The following shorthand notations and definitions will be useful later:

Xy ≡
∂X

∂y
, Xt ≡

∂X

∂t
, Yt ≡

∂Y

∂t
, (B.28a)

Xy ≡
∂X
∂ζy

, Xt ≡
∂X
∂t̃

, Yt ≡
∂Y
∂t̃

, (B.28b)

ωxy ≡
W [ζx,Xy]

∆X , ωxt ≡
W [ζx,Xt]

∆X , ωyt ≡
W [ζy,Yt]

∆Y . (B.29)

The differentials in the two different coordinate systems are connected by












dx

dy

dt













= A













dζx

dζy

dt̃













, (B.30)

where

A =













∆X ∆Xωxy ∆Xωxt

0 ∆Y ∆Yωyt

0 0 1













. (B.31)

The inverse is

A−1 =













1
∆X

−ωxy

∆Y
−ωxt + ωxyωyt

0 1
∆Y

−ωyt

0 0 1













. (B.32)

Further, the partial derivatives are linked by












∂
∂x

∂
∂y

∂
∂t













=
(

A−1
)T













∂
∂ζx

∂
∂ζy

∂
∂t̃













. (B.33)
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The total time derivative is given by

d

dt
=

(

vx vy 1
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Written out in full, these equations become

∂

∂x
=

1

∆X
∂

∂ζx
, (B.35a)

∂

∂y
=

1

∆Y

(

∂

∂ζy
− ωxy

∂

∂ζx

)

, (B.35b)

∂

∂t
=

∂

∂t̃
− (ωxt − ωxyωyt)

∂

∂ζx
− ωyt

∂

∂ζy
, (B.35c)

and

d

dt
=

∂

∂t̃
− (Ωx − ωxyΩy)

∂

∂ζx
− Ωy

∂

∂ζy
, (B.36)

where

Ωx = ωxt −
vx

∆X , Ωy = ωyt −
vy

∆Y . (B.37)

Having introduced X 0, X 1, Y0, and Y1 means that four more equations of

motion are needed. In the original coordinate system (x, y, t), the total derivatives
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of the boundaries are

dX0

dt
= vx(x = X0, y, t) , (B.38a)

dX1

dt
= vx(x = X1, y, t) , (B.38b)

dY 0

dt
= vy(x, y = Y 0, t) ≡ V 0(t) , (B.38c)

dY 1

dt
= vy(x, y = Y 1, t) ≡ V 1(t) . (B.38d)

It is worth noting that vy is only a function of t when y = Y i, since the boundaries

there are straight. Eqs. (B.38) need to be written in the other coordinate system,

(ζx, ζy, t̃). Using Eq. (B.36), (the tilde over the velocities just means that they are

functions of ζx, ζy, and t̃, rather than x, y, and t)

Y0
t =

dY 0

dt
= ṽy(ζx, 0, t̃) = Ṽ 0(t̃) , (B.39a)

Y1
t =

dY 1

dt
= ṽy(ζx, 1, t̃) = Ṽ 1(t̃) , (B.39b)

X 0
t =

dX0

dt
+ Ωy(0, ζy, t̃)X 0

y = ṽx(0, ζy, t̃) +

[

ωyt −
ṽy(0, ζy, t̃)

∆Y

]

X 0
y , (B.39c)

X 1
t =

dX1

dt
+ Ωy(1, ζy, t̃)X 1

y = ṽx(1, ζy, t̃) +

[

ωyt −
ṽy(1, ζy, t̃)

∆Y

]

X 1
y . (B.39d)

This means that

ωxt =
1

∆X

{

W [ζx, ṽx] −
W [ζx, ṽyXy]

∆Y

}

+ ωxyωyt , (B.40)

and Eqs. (B.35c) and (B.36) become

∂

∂t
=
∂

∂t̃
− 1

∆X

{

W [ζx, ṽx] −
W [ζx, ṽyXy]

∆Y

}
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∆Y
∂

∂ζy
(B.41)

d

dt
=
∂

∂t̃
− 1

∆X

{

W [ζx, ṽx] − ṽx −
W [ζx, ṽyXy] − ṽyW [ζx,Xy]

∆Y

}

∂

∂ζx

− 1

∆Y
{

W [ζy, Ṽ ] − ṽy

} ∂

∂ζy
, (B.42)

respectively. As a final comment, note that by setting X0 ≡ 0 to all the expressions

in this section, one regains the results found in Section B.2.
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