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Dynamics of Large-Scale Plastic Deformation and the Necking Instability in Amorphous Solids
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We use the shear transformation zone (STZ) theory of dynamic plasticity to study the necking
instability in a two-dimensional strip of amorphous solid. Our Eulerian description of large-scale
deformation allows us to follow the instability far into the nonlinear regime. We find a strong rate
dependence; the higher the applied strain rate, the further the strip extends before the onset of
instability. The material hardens outside the necking region, but the description of plastic flow within
the neck is distinctly different from that of conventional time-independent theories of plasticity.
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remain intact. We find that necking in the STZ theory is
rate dependent; the instability occurs at smaller strains

j i

(3)
Conventional descriptions of plastic deformation in
solids consist of phenomenological rules of behavior,
with qualitative distinctions between time-independent
and time-dependent properties, and sharply defined yield
criteria. Plasticity, however, is an intrinsically dynamic
phenomenon. Practical theories of plasticity should con-
sist not of intricate sets of rules, but of equations of
motion for material velocities, stress fields, and other
variables that might characterize internal states of solids.
Roughly speaking, a theory of plasticity, especially for an
amorphous solid, should resemble the Navier-Stokes
equation for a fluid, with the pressure replaced by a stress
tensor, and the viscous forces replaced by a constitutive
law relating the rate of plastic deformation to the stresses
and internal state variables. That constitutive law should
contain phenomenological constants, analogous to the
bulk and shear viscosities, that are measurable and, in
principle, computable from molecular theories. Yield cri-
teria, work hardening, hysteretic effects, and the like
would emerge naturally in such a formulation.

The goal of the STZ (shear transformation zone)
theory of plasticity [1–7], from its inception, has been
to carry out the above program. In this paper we show
how the STZ theory describes a special case of large-
scale yielding, specifically, the necking instability of a
strip of material subject to tensile loading. There is a large
literature on the necking problem. References that we
have found particularly valuable include papers by
Hutchinson and Neale [8], McMeeking and Rice [9],
and Tvergaard and Needleman [10]. Our purpose here is
to explore possibilities for using the STZ theory to in-
vestigate a range of failure mechanisms in amorphous
solids, possibly including fracture. We are able to follow
the necking instability far into the nonlinear regime
where the neck appears to be approaching plastic failure
while the outer regions of the strip become hardened and
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when the strip is loaded slowly. One especially important
element of our analysis is our ability to interpret flow and
hardening in terms of the internal STZ variables.

To make this problem as simple as possible, we consi-
der here only strictly two-dimensional, amorphous mate-
rials. By ‘‘strictly,’’ we mean that elastic and plastic
displacement rates are separately planar as in two-
dimensional molecular dynamics simulations. The two-
dimensional STZ equations presented in this paper are
based on earlier work by Falk, Langer, and Pechenik
[7,11,12]. We use Eulerian coordinates in which, as in
fluid dynamics, the variables xi denote the current physi-
cal positions of material elements. Let the system lie
in the x1 � x, x2 � y plane, and write the stress tensor
in the form: �ij � �p�ij � sij; p � � 1

2 �kk, where p is
the pressure and sij is the deviatoric stress — a trace-
less, symmetric tensor. In analogy to fluid dynamics,
let vi�x; y; t� denote the material velocity at the physi-
cal position x; y, and time t. Then the acceleration equa-
tion is [13]
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Here, 
 is the density which, because we shall assume a
very small elastic compressibility and volume conserving
plasticity, we shall take to be a constant. The symbol d=dt
denotes the material time derivative acting on a scalar or a
vector field:
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Our first main assumption is that the rate of deforma-
tion tensor can be written as the sum of linear elastic and
plastic contributions:
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where � is the shear modulus, K � ��1� ���=�1� ��� is
the two-dimensional inverse compressibility (or bulk
modulus), and �� is the two-dimensional Poisson ratio.
The symbol D=Dt denotes the material time derivative
acting on any tensor, say Aij:
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and !ij is the spin:
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The plastic part of the rate-of-deformation Dplast
ij , like

sij, is a traceless symmetric tensor, thus the plastic defor-
mations are area conserving. For present purposes, we use
a simple, quasilinear form of the STZ theory in which

Dplast
ij � �0 qij�s;��; qij�s;�� � sij � �ij; (6)

and �0 is a material-specific constant. The traceless, sym-
metric tensor �ij is the internal state variable mentioned
earlier. It is proportional to a director matrix that specifies
the orientation of the STZs; its magnitude is a measure
of the degree of their alignment. The equation of motion
for �ij is

D�ij

Dt
� qij �

1

2
jqkm skmj�ij: (7)

In Eq. (6), � plays—very roughly—the role of the ‘‘back
stress’’ or ‘‘hardening’’ parameter in conventional theo-
ries of plasticity [14–16], a major difference being that �
emerges directly from a rate equation governing the
population of STZs and is, in principle, a directly mea-
surable quantity [1,17]. If the second term on the right-
hand side of Eq. (7) were missing, then � would be
proportional to the integrated plastic strain. This second
term, however, which is produced by the creation and
annihilation of STZs, is a crucial element of the STZ
theory. As we shall show briefly below, this term produces
the exchange of dynamic stability between viscoelastic
and viscoplastic states that replaces the conventional as-
sumptions of yield surfaces and other purely phenomeno-
logical rules of behavior.

With one important exception, Eqs. (6) and (7) con-
stitute a tensorial version of the original STZ theory
obtained by linearizing the stress dependence of the
rate factors and rescaling. Because of the linearization,
these equations do not properly describe memory effects
present in the full theory that are important when the
system is unloaded or reloaded, but this will not affect
our results until the system reaches the necking instabil-
ity. Only after the neck starts to flow plastically, causing
the hardened regions to unload, will we need the full
nonlinear theory to determine if the observed behavior
is pertinent. We have chosen the rescaling so that all
stresses and moduli are expressed in units of the plastic
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yield stress.We also have assumed that the local density of
STZs is always at its equilibrium value so that we do not
need to solve an extra equation of motion for that field
(denoted by the symbol � in earlier papers).

The important exception alluded to above is the pres-
ence of the absolute-value bars in Eq. (7). The expression
inside the bars is proportional to the rate at which plastic
work is being done on the system, a quantity which
appears in the original theory as a non-negative factor
in the STZ annihilation and creation rates. A negative
value of this quantity would be unphysical. In earlier
studies of spatially uniform systems, this quantity always
remained positive; however, we have observed negative
values in the present calculations. The absolute value
prevents such unphysical behavior and is consistent with
the intent of the original theory. We emphasize, however,
that this term contains some of the principal assumptions
of the STZ theory. There are other possibilities for it (see,
for example, [2]); and it will be interesting to explore the
physical significance of these variations of the model.

To understand the transition between viscoelastic and
viscoplastic behaviors at the yield stress, and the role
played by the state variable �, it is easiest to look
first at a uniform system under pure shear. Let sxx �
�syy � s, sxy � 0, �xx � ��yy � �, �xy � 0; and con-
sider a situation in which s is held constant. Equations (3)
and (7) become

_"" � �0 �s���; (8)

_�� � �s� ���1� s��; (9)

where _"" is the total strain rate. At s � 1, these equations
exhibit an exchange of stability between the nonflowing
steady-state solution with _"" � 0, � � s for s < 1, and the
flowing solution with _"" � 0, � � 1=s for s > 1. As ex-
plained in earlier publications, the steady-state system is
‘‘jammed’’ or ‘‘hardened’’ in the direction of the applied
stress for s < 1; whereas, for s > 1, new STZs are being
created as fast as existing ones transform, and there is a
nonzero plastic strain rate.

Our goal now is to see how this exchange of stability
occurs in a dynamic, spatially nonuniform situation.
Consider a rectangle with straight grips at x � 	L�t�.
The upper and lower surfaces, at y � 	Y�x; t�, are free
boundaries. We assume symmetry about both the x and y
axes so that we need to consider only the first quadrant of
the system. On the free upper boundary, the relation
between the material velocities and the motion of the
surface is�
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We also must specify stress conditions on this surface:
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; �nt � 0: (11)
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FIG. 1. Initial and final shapes of the material in four nu-
merical tensile tests: (a) �0 � 0:1, � � 0:001; (b) �0 � 0:1,
� � 0:01; (c) �0 � 0:3, � � 0:001; (d) �0 � 0:3, � � 0:01.
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a: ε0 = 0.1, Ω = 0.001
b: ε0 = 0.1, Ω = 0.01
c: ε0 = 0.3, Ω = 0.001
d: ε0 = 0.3, Ω = 0.01

FIG. 2. The engineering stress ~��xx at the grip plotted against
the engineering strain ~""xx for the four cases shown in Fig. 1.
The big circle marks the state whose internal properties are
shown in Fig. 3.
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Here, ! is the surface tension, " is the curvature, and the
subscripts n and t denote normal and tangential compo-
nents, respectively. The grips at x � 	L�t� move out-
ward at a predetermined strain rate, _LL=L � �; thus
vx�L; y; t� � L� for 0< y< Y�L; t�. Note that we do
not constrain vy along this edge; we allow the grip to
slide in the y direction.

We wish to study how the shape of the upper surface,
Y�x; t�, changes as the grips on the sides are moved out-
ward at various strain rates �. Rather than trying to track
this surface through the most general possible deforma-
tions, we assume that Y�x; t� remains single valued and
simply make a change of variables:

# �
x

L�t�
; $ �

y
Y�x; t�

: (12)

We then transform Eqs. (1), (3), and (7), and the boundary
conditions (10) and (11) into equations of motion for the
velocity, the stress, the state variable �, and the moving
boundary Y, all expressed as functions of #, $ , and t.
We solve these equations in the fixed square 0< #< 1,
0< $ < 1.

In all of the calculations described here, we have used

 � 1, � � 100, K � 300, and ! � 0:1. Our initial con-
ditions are L�0� � 4 and Y�x; 0� � 1� ��x�, where
��x� � 0:01 exp��8x2� is a small deformation that breaks
translational symmetry. We chose two values for �0: 0.1
(hard) and 0.3 (soft), and two values for the strain rate �:
0.01 (fast) and 0.001 (slow). The time taken by sound
waves to cross the system is approximately L

����������

=�

p
�

0:4. This is smaller than the characteristic time scale for
plastic deformation, which we have scaled to unity, and
is much smaller than the actual time scales that we
observe for our relatively small pulling rates �. Thus,
our system is elastically quasistationary, and the precise
value of 
 is not important.

We have solved these equations on a fixed, nonuniform
80� 20 grid in #; $ space, using the implicit differential-
algebraic solver DASPK [18]. In order to suppress numeri-
cal instabilities, we have added a small viscosity 
%r2 vi
to the right-hand side of the acceleration Eq. (1), and have
set % � 0:1.

Figure 1 shows initial and final shapes of samples
undergoing tensile tests for four different combinations
of the two parameters � and �0 as indicated. For clarity,
we show the complete strip although only the behavior of
the upper right quarter was computed. The final shapes
were arbitrarily chosen at the time when the engineering
stresses at the grips were roughly half of their peak values
(see Fig. 2). There is a necking instability in all four
cases, but it occurs at greater strain for the faster pulls.
This rate dependence is also apparent in Fig. 2, which
shows the engineering stress at the center of the grip,
~��xx�L; 0; t� � �xx�L; 0; t�Y�L; t�=Y�L; 0� as a function of
the engineering strain ~""xx � �L�t� � L�0��=L�0� for all
four cases (remember that �xx � s� p, and s � sxx).
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Thus, although the ‘‘softness’’ parameter �0 controls the
overall plastic response of the material, the onset of the
necking instability is controlled by the applied strain rate.

To see what is happening internally, we show in Fig. 3
graphs of s and � ( � �xx) along the centerline of the
strip (the x axis) for case (a) in Fig. 2 shortly after
the sample is starting to neck. According to Eq. (6), the
plastic flow rate is proportional to s� �. Outside the
necking region, s � � � 1; thus the system in this region
has hardened and deforms only elastically. Inside the
necking region, however, s rises well above unity and �
becomes small. Here the system has come close to steady-
state flow on the � � 1=s branch of stationary solutions
of Eq. (9).

This internal structure of the STZ picture of necking
dynamics makes it clear that the strain-rate dependence
shown in Figs. 1 and 2 is caused by the competition
between the rate of elastic loading and the rate at which
hardening occurs, the latter being governed by the equa-
tion of motion for �, Eq. (7). When the loading is slow, �
grows along with the stress s, and there is little plastic
045506-3
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FIG. 3. The deviatoric stress s, and �, along the x axis. This
picture corresponds to case (a) indicated by the big circle in
Fig. 2 shortly after the sample is starting to neck.
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flow anywhere until the stress exceeds the yield stress in
the necking region. In the opposite limit, when the load-
ing is fast, � remains appreciably smaller than s for a
longer time during which the material undergoes plastic
deformation everywhere. It would be useful to test this
prediction of the STZ theory by measuring necking, say,
in amorphous metals. We presume that various ingre-
dients of the full STZ theory, such as stress-dependent
rate factors and other features that have been ignored
here, would be needed to fit experimental data quantita-
tively, and that we would learn much about the theory
from such an effort.

Note that the behavior shown in Fig. 3 is quite different
from that predicted by conventional, time-independent
plasticity theory, in which there would be a plastic zone
with s � 1 inside the neck, that is, s would remain at the
yield stress. We have found no evidence that this conven-
tional behavior occurs in the simulations presented here,
even for the smallest pulling speeds. (For cavitation, the
STZ theory predicts a conventional plastic zone around a
growing hole when the growth rate is very slow [4].) Once
the instability sets in, the development of the neck is
governed by the elastic energy already stored in the strip.
We have confirmed this feature of late-stage necking
dynamics by performing numerical experiments in which
we stop the motion of the grips, that is, hold them fixed, at
various times after the neck has started to form but well
before it has grown appreciably.We find that so long as the
stored elastic energy is large enough, stopping the remote
loading in this way has almost no effect on the neck; it
continues to grow just as before, driven by the elastic
unloading.

The behavior described in the last sentence — necking
driven by stored elastic energy — looks in many ways
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like fracture, although necking differs from ordinary
fracture in that the stress concentration that triggers the
instability is due to narrowing of the strip as a whole
rather than to a localized defect on just one surface.
Nevertheless, the behaviors shown in Fig. 3 (and other,
later-stage results not shown here) suggest the onset of a
localized, propagating failure mechanism. In order to
study the connection between necking and fracture in
adequate detail we believe that we shall need to use the
full STZ theory and to improve our numerical resolution.
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